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ABSTRACT 
 

This dissertation is devoted to the virtual investigation of the mechanical 

behavior of micro/nano polymer composites (MNPCs). Advanced composite materials 

are favored by the automotive industry and army departments for their customizable 

tailored properties, especially for strength and ductility compared to pure polymer 

matrices. Their light weight and low finished cost are additional advantages of these 

composite materials. 

Many experimental and numerical studies have been performed to achieve the 

optimized behavior of MNPCs by controlling the microstructure. Experiments are costly 

and time consuming for micro scale. Hence, recently numerical tools are utilized to help 

the material scientists to customize and optimize their experiments. 

Most of such numerical studies are based on characterizing the MNPCs through 

simple microstructures, as circular particles or straight fibers embedded in a specific 

polymer matrix. Although these geometries are effective in virtual modeling some types 

of composite material behavior, they fail to address some critical key micro-structural 

features, which are important for our goals. Firstly, they fail to properly address the 

randomness of particles. Secondly, 2D analyses have limitations and they can provide 

qualitative insight, rather than evaluate the quantitative response of the material 

behavior. Thus, in order to fill this gap, a user friendly software program,  REV_Maker, 

is developed in this project for generating 2D and 3D RVEs (representative volume 

elements) to precisely represent the morphology of material in microstructural level. 



iii 
 

In models, polymers are usually considered as viscoelastic-viscoplastic or 

hyperelastic-viscoplastic materials without taking into account viscodamage models. 

Therefore, in this work rate- and time-dependent damage (viscodamage) is separately 

considered to fully investigate the initiation and growth of damage inside polymer 

composites.  

Besides, most of the common viscoelastic and viscoplastic models assumes small 

deformation; therefore, in this dissertation a procedure is established, which incorporates 

all required modifications to generalize a small strain constitutive model to its identical 

large deformation range. Thus, here a straightforward generalization and implementation 

method based on classical continuum mechanics is proposed, which due to its simplicity, 

can be applied to a wide range of elastoplastic constitutive models. Then, the available 

viscoelastic and viscoplastic models are extended to large strain framework. By applying 

the generalized viscous models, one may address and measure the large deformation 

response of MNPCs. 

Numerous simulations were conducted to predict the overall responses of 

micro/nano composites with different morphologies (particles volume fractions, 

orientations, and combinations). The effect of each particle, and the combination of  

particles on the composite responses are compared and presented. 
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CHAPTER I 
 

INTRODUCTION 
 

1.1 Problem Statement 

According to the invention and usage of light-weight materials in industry and in 

army departments for light-weight vehicular and personal protections; utilizing 

traditional heavy steels and alloys is not an effective and efficient approach. Therefore, 

Low-Density Composite Materials (LDCM) for light-weight armor packages as well as 

light-weight parts in auto industry, are highly desirable. There is a significant need for 

improving the impact loading performance, and increasing the strength of light-weight 

composite materials. These materials are commonly used in industry (especially in 

aircrafts) and also for army assets to decrease the weight and degradation, along with 

increasing the strength, flexibility, mobility, and fracture toughness to achieve improved 

resistance against impact loadings. 

Varying performance can be achieved for composite materials by combining 

constituents with different thermo-mechanical properties. Metals and polymers have 

been used for the host material (matrix), which is reinforced with different types of 

inclusions. Since the impact damage performance and strength of composite materials 

can be enhanced by adding micro/nano inclusions such as different types of fibers and/or 

particles with various sizes and distributions, the proposed research leads to develop and 

apply a fundamental understanding of the key role of particle size, aspect ratios, 

distribution, and also interfacial effects on the strengthening (strain-hardening) and 
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micro-damage (strain-softening) mechanisms. These items finally guide to design better 

LDCMs with proper and more desirable optimized micro/nano structure that can show 

an improved performance while subjected to different types of loadings. 

To achieve a fundamental understanding on the effects of the properties and 

microstructural geometries of the inclusions on the overall responses of composites, 

various micromechanical models have been formulated. However, most of the models 

have been applied to simple geometries. Therefore, a reliable relationship between 

material microstructure features, that specifically describes the effects of particles sizes, 

aspect ratios, different patterns (orientations and distributions), different inclusions 

mixtures, average inter-particles spacing, and also interfacial properties of the composite 

materials, remains elusive. Hence, the main objective of the proposed research is to 

develop and apply efficient computational modeling and constitutive laws that can be 

employed for describing and predicting a realistic response of the micro/nano structure 

of composite materials. 

From an economic point of view (cost and time), setting various straightforward 

micromechanical experiments on a number of material samples including different 

particle shapes, sizes, and morphologies, different micromechanics (particles inter-

spacing and volume factions), different constituents properties subjected to various 

loading conditions is not a practical task. Therefore, an effective computational 

modeling scheme that can provide a better understanding of the micro/nano composite 

structures of LDCMs is needed. 

Work-hardening is one of the primary concepts for increasing both the strength 

and fracture toughness of materials. However, it is noteworthy to recall that any increase 



3 
 

in strength in general is associated with a loss in ductility. These properties can be 

enhanced by the second phase inclusions of different sizes. For example, Fig.1.1 shows a 

composite material (containing nano-ceramics) in which the particles are distributed 

heterogeneously (randomly), and are divided into two or three different sizes. Until now, 

it has been sugested that adding smaller size particles increases the strength of the 

composite through the strain hardening mechanism, while the larger particles lower the 

fracture toughness by strain softening (Hao et al., 2004). 

 

  
                                       (a)                                                          (b) 
Fig. 1.1. 2D image of: (a) Nano-ceramics granules, (b) Nano-ceramics composite. (nano-
ceramics applications- http://www.plasmachem.com). 
 

Thus, by optimizing the volume fractions, shapes, sizes, distribution, and interfacial 

properties, one will be able to enhance the strength and fracture toughness of a 

composite simultaneously. Even though currently advanced technology provides many 

ways to achieve either high strength or fracture toughness in materials which are 

conducted by some high technical processing, the challenge remains to simultaneously 

achieve both properties. 

The size of micro-structural inclusions has an important effect on the mechanical 

properties of a material (Abu Al-Rub and Voyiadjis, 2004a, b). For example, 
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experimental works on particle-reinforced composites have revealed that an extensive 

increase in the macroscopic yield strength, flow stress, and fracture toughness can be 

achieved by reducing the size of inclusions, whereas the volume fraction is constant 

(Kiser et al., 1996; Kouzeli and Mortensen, 2002; Lloyd, 1994; Nan and Clarke, 1996; 

Niihara et al., 1993; Rhee et al., 1994a; Zhao et al., 1993; Zhu et al., 1995). Producing 

light-weight composites needs a systematic way for investigating and designing the 

proper dimensions, shape, and the quantity of the required components. To achieve this 

goal, the following questions have to be answered: 

 What types of inclusions are needed to gain better mechanical performance of a 

microstructure in a Polymer Composite Material (PCM)? 

 What are the optimum volume fractions and dispersion for each type of inclusion 

that can enhance the mechanical responses of these materials? 

 Which constitutive models can better explain the characteristics behaviors of PCMs? 

 How can a cost effective procedure for different microstructures be achieved? 

Polymer and PCMs exhibit time and rate dependent responses, therefore in this 

research, unified viscoelastic, viscoplastic, and viscodamage models are employed for 

characterizing the polymer matrix. These unified models have been formulated on the 

bases of the principle of virtual power and laws of thermodynamics and utilizing large 

deformation frameworks. By using this model for the host material, the effects of 

particle shapes and sizes, aspect ratios, diverse distributions, different inclusions 

mixtures, average inter-particles spacing, and also interfacial properties of polymer 

composites are computationally investigated. 
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1.2 Constituents in Nanocomposites 

Studying the open literature and the industeries producing micro/nano polymer 

composites reveals that the micro/nano inclusions for improving the mechanical 

properties of the composites can be listed as: 

 Carbon Nano Tubes or Fibers (single-, double-, and multi-walled with high and 

extremely high aspect ratios). 

 Nano-metals (e.g. nano Aluminum, nano Iron, nano Nickel). 

 Nano-ceramics (e.g. nano Carbides, nano Nitrite, nano Titanium). 

 Nano-clays (nano-clay/polymer composites are categorized as: (a) conventional 

composite, (b) partially intercalated, (c) fully intercalated, and (d) fully exfoliated). 

Therefore, in this section the reasons and interests for utilizing these inclusions in 

polymer composites are described. 

1.2.1 Motivation for Investigating Nano-Clay Particles 

Inspired by the intresting results obtained by a group of researchers in Japan by 

incorporating nano-clays into nylon (Usuki et al., 1993), extensive work has been carried 

out over the past two decades on the addition of nano-clay particles into polymers for the 

purpose of greatly enhancing their properties. In these types of composites, generally the 

tensile modulus, tensile strength, glass transition temperature, resistance against the 

absorption of moisture, resistance against flammability, and fracture toughness have 

been investigated. Yasmin et al. (2003) added up to 10 wt% (weight fraction) of clay 

into epoxies, and obtained up to a 60% increase in elastic modulus, although the tensile 
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strength decreased. For resins such as epoxies, which are normally used as the matrix for 

composites in advanced composite structures, toughness is a very important parameter 

for evaluating the amount of enhancement. For improving the toughness of epoxies, 

many researchers have tried to use nano-clays. Liu et al. (2004) added 4 wt% of nano-

clay into Diglycidyl-Ether of biphenyl and obtained an increase in elastic modulus, 

decrease in glass transition temperature, and 80% increase of stress intensity factor from 

about 0.5 to about 0.9 MPa m . In 2004, Liu et al. (2004) at Concordia Center for 

Composites showed that by adding just 5 wt% of clay, the strain energy release rate 

(three-point bending of specimen with a notch) of an aircraft epoxy system can be 

enhanced from 125 to 650 2J/m (420% increase). Such increase in fracture toughness of 

the mixture provides great encouragement for these approches. 

1.2.2 Motivation for Studying Carbon Nanotubes 

The recent discovery of carbon nanotubes (CNTs) has gained more interest due 

to providing unique properties generated by their structural perfection, small size, low 

density, high strength, heat conductivity, and also excellent electronic properties. Indeed, 

the longitudinal Young’s modulus of CNTs falls between 0.4 and 4.15 TPa, while a 

tensile strength approaching 100 GPa (Buryachenko and Roy, 2005). Carbon nanotubes 

occur in three distinct forms, single-walled nanotubes (SWNT), which are composed of 

a graphite sheet rolled into a perfect cylinder, double-walled nanotubes (DWNT) having 

two concentric graphite cylinders, and multi-walled nanotubes (MWNT), which consist 

of multiple concentric graphite cylinders. A high aspect ratio of CNT and its 

extraordinary mechanical properties (strong as diamond and flexible as polymers) make 
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them ideal reinforcing fibers in the nano-composites field. Hence, CNTs can be utilized 

to produce advanced nano-composites with improved stiffness and strength. Tensile tests 

on composites confirm that adding only 1 wt% of nanotubes results in 40% and 30% 

increase in elastic modulus and strength, respectively (Qian et al., 2000). This illustrates 

a significant amount of load transfer across the nano tube–matrix interface. Moreover, 

the CNTs provide very high interfacial area while embedded in a nano-composite 

matrix. This can also provide a form of mixture and assemblies with unique architectures 

that might be constructed by interconnected CNTs. In the last decade, some researchers 

observed a substantial increase in the effective properties of polymer nano-composites 

(PNCs) (Chen et al., 2006; Gojny et al., 2006; Zhu et al., 2004). On the other hand, in 

spite of the promising properties of CNTs, other researchers have claimed and reported 

several experiments with a little enhancement of the elastic properties of the PNCs 

(Ajayan et al., 2000; Moisala et al., 2006; Qian et al., 2002). 

The above mentioned research and results explain the motivations for studying 

physical properties of polymer composites containing nano-clay particles and CNTs. 

According to such background, investigating the properties of polymer composites with 

different particles necessitates an efficient systematic technique. Also, polymer 

composites usually contain two or three different constituents, and the micromechanical 

modeling is a suitable approach for investigating the effects of components in a 

composite. Thus, in this work, effort is focused on automatically creating various 

microstructures representing realistic configurations of different types of composites. 

The benefits of utilizing micromechanical modeling can be listed as follows 



8 
 

 Proper selection of the inclusions (particles, fibers, or both). 

 Proper and ideal arrangements and patterns for particles and fiber-reinforcement 

inside the matrix (i.e. producing and inspecting different materials systems). 

 Satisfying the designing requirements (mechanical/thermal). 

 Leading to the evidences that facilitate the processes of fabrication. 

 Minimizing the manufacture risks (cost, schedule, and technical). 

1.3 Research Objectives 

The macroscopic mechanical behavior of polymer composites strongly depends 

on their microstructure, which is highly governed by the type of inclusions and the 

pattern of dispersion. It is noteworthy to mention that the reinforcement forms can be 

listed as continuous fibers, discontinuous or chopped fibers, whiskers, particles, 

platelets, etc. Hence, the ultimate goal of the proposed research is studying the overall 

mechanical responses of polymer composite materials containing various types of 

embedded micro/nano inclusions such as: ceramics, clays, metal particles, as well as 

carbon nano tubes or carbon nano fibers. Also, composites including both nano-ceramics 

and CNTs or both nano-clays and CNTs, will be examined. This goal can be achieved by 

studying the effects of particle shapes and sizes, aspect ratios, miscellaneous 

distributions, different inclusions mixtures (particles-particles, particles-fibers), average 

inter-particles spacing, and also the properties of interfacial contact faces in a polymer 

composite. The specific objectives of the proposed research are listed as follows: 
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 Studying and applying viscous based constitutive models, to be able to evaluate the 

time and rate dependency behavior of polymer-based composite materials. 

 Extending the small deformation constitutive models to their identical large 

deformation framework. 

 Calibration and validation of the material parameters. 

 Creating realistic complex micromechanical representative volume elements (RVEs) 

for different types of inclusions with in polymer composites systems. 

 Investigating how the micro-structural and morphological changes can affect the 

total responses of these materials. Also, how they can enhance the mechanical 

properties of the composites. This may be accomplished by utilizing the viscoelastic, 

viscoplastic, and viscodamage models to investigate the following phenomena: 

o Strain localization and shear banding. 

o Initiation of damage at inclusion-matrix interfaces and boundaries. 

o Micro-damage propagation inside the matrix and around the constituent phases. 

o Energy dissipation through viscoelastic, viscoplastic, and viscodamage models. 

The above mentioned objectives of the research are achieved by the following tasks. 

1.3.1 Investigating Viscous Based Constitutive Models for Evaluating Time and 
Rate Dependency Behavior of Polymer-Based Composite Material 

The most common linear viscoelastic models are convolutional integral 

constitutive model based on the Boltzmann superposition principle (Findley and Onaran, 

1974). However, most polymers are known to exhibit non-linear viscoelastic (NVE) 

behavior (i.e. creep and relaxation modulus are stress and strain dependent, 
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respectively), especially at relatively higher stresses and/or temperature levels. This type 

of non-linearity can be modeled by using Schapery’s single-integral NVE constitutive 

model (Schapery, 1969a). The NVE response of polymers and PCMs can be well-

predicted by applying this model (see e.g. Christensen (1966); Schapery (1969a, 1974, 

2000); Sadkin and Aboudi (1989); Haj-Ali and Muliana (2004); Muliana and Haj-Ali 

(2008)). Nevertheless, the Schapery model was written based on the small strain notion 

and since the deformation in polymer and polymer composite materials in many cases 

are not in the range of small deformation; hence, this model should be re-derived based 

on finite strain concept. This task has been accomplished and explained in Chapter 4. 

In several constitutive models, the viscoplastic (unrecoverable) deformations are 

considered as non-linear functions of stress and time. For this purpose, Perzyna’s theory 

(Perzyna, 1971) has been widely used for predicting the permanent deformation in 

polymers and polymer composites. Recently, viscoplastic constitutive models of 

polymers based on an overstress which has non-linear rate-dependent behaviors have 

been formulated (e.g. Krempl and Ho (1998); Colak (2005); Hall (2005)). Kim and 

Muliana (2009) employed a recursive iterative method to implement this viscoelastic–

viscoplastic constitutive model. They showed that the coupling of the non-linear 

viscoelasticity model of Schapery and Perzyna’s viscoplasticity model is reasonable for 

accurately predicting the nonlinear mechanical responses of polymers at different 

stresses. Therefore, a Perzyna-type viscoplasticity is hired and extended to large 

deformation framework to capture the plastic behavior of polymers. This task is 

discussed in Chapter 5. 
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After yield stress, polymer chains move (plastic flow) inside the material to find 

a proper stable position. During the flow procedure, polymers show a reduction in their 

capacity for carrying loads (strain softening). Then, after the chains are locked in the 

stable position, they can carry more loads (strain hardening). But, during both flowing 

(softening) and locking (hardening) procedures, because of expanding and opening of 

the molecular chains some of them and their pendent branches break and create 

micro/nano voids in the material (which causes these materials to experience micro-

damages under various loading conditions). Also, the initial free local volume (FLV) in 

between the polymer chains are expanded, which increase the tiny voids. Thus, specific 

phenomena such as tertiary creep, post-peak softening behavior of the stress-strain 

response, and degradation in mechanical properties cannot be explained only by 

viscoelastic and viscoplastic constitutive models. Thus, to better represent the complex 

behavior of polymers and polymer composite materials, the combined effects of 

viscoelasticity, viscoplasticity and viscodamage (i.e. delayed or time-dependent damage) 

needs to be considered in the constitutive laws for these materials. Thus, a rate 

dependent damage model which was first proposed by Darabi et al. (2011) for HMA (hot 

mixed asphalt materials), is utilized. But, there is no need to change the viscodamage 

model in view of the fact that this model is not on the base of infinite strains. These 

models are extended based on large deformation approaches, and are implemented into 

the well-known commercial finite element code ABAQUS (2008) via the user material 

subroutine, UMAT. 
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1.3.2 Extending Small Strain Constitutive Models to Large Deformation Range 

Constitutive relations for investigating the behavior of polymers need finite strain 

theory. Several models have been vastly studied; however, it is very difficult to evaluate 

a large strain constitutive model directly by just capturing some large deformation data 

sets. Actually, many elegant and practical elastoplastic models have been established and 

examined for different conditions and experimental tests. Therefore, one of the strategies 

for studying large deformation is extending the available small strain constitutive models 

to finite strain framework. The main core of such generalization is based on how to 

decompose the elastic and plastic portions of the total strain, in a way to be compatible, 

applicable, and identical to small deformation constitutive laws. For deriving the 

required relations, Lagrangian notion has been used instead of Eulerian, and all has been 

explained in detail in Chapter 3. 

1.3.3  Calibration and Validation of Material Parameters 

The full utility of proposed constitutive laws to finally model the macroscopic 

mechanical behavior of PMCs strongly depends on the accuracy of the input parameters. 

The main steps for the determination of material parameters associated with the 

presented constitutive models in Subsection 1.3.1 can be summarized as 

 Procedure for determining the combined viscoelastic and viscoplastic model 

parameters in a systematic way, by using the creep-recovery test is thoroughly 

discussed in Chapter 5. 

 Required procedure for finding the viscodamage parameter’s model is also fully 

described in Chapter 5. 
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 Mechanical properties of nano-clay constituents are taken from the results 

determined by  Sheng et al. (2004). The elastic modulus of CNTs are so scattered in 

open literatures, so the mechanical properties of CNTs are extracted based on the 

calculation of an equivalent-continuum modeling by Odegard et al. (2002). 

Subsequently, these models will be used for predicting the viscoelastic, viscoplastic, and 

damage responses of PMMA-based nano-composites under different loading conditions. 

1.3.4 Creating Realistic Micromechanical Representation for Different Types of 
Inclusions 

There are some ways for creating micromechanical models such as: creating 

matrix and inclusions manually in a well-known commercial software like ABAQUS, 

ProE, Solidworks, and ANSYS. The other method is based on TEM or SEM images of a 

desired composite. Then the images should be analyzed, rendered, and purged to be 

processed by some CAD family software (Aviso, AutoCAD and 3d-Max) to be 

converted to geometrical objects. Thereafter, the geometry files have to be exported to 

the finite element software to mesh the entities. Both ways has some limitations. The 

first technique can be applied manually which is a very time consuming task and also the 

finite element family software usually are just able to create regular based shapes or 

parts (one can create complex geometry based on simple entities). 

The second method, image based technique is also cumbersome, and it needs a 

3D image scanner and many samples in different sizes with several types of particles 

and/or various weight fractions. It is obvious that creating so many samples and then 

converting them to numerical representation is a hardly possible task. 
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Therefore, to overcome this problem and also to be able to create different 

material systems automatically, decision was made to create software which is able to 

generate RVEs in both 2D and 3D, containing various types of particles and shapes. The 

software has been written by utilizing Borland C++ Builder compiler. This program is 

capable to generate and disperse different types of particles and inclusions for 

micro/nano composite materials. 

The procedure for creating such models is that the program checks the available 

positions for the desired particles without intersecting other objects. Then, it 

automatically generates the required script files for AutoCAD to draw the geometry, and 

afterwards generates the related Python code to import the geometry from AutoCAD to 

ABAQUS. Subsequently, it applies all the necessary options and settings to the model in 

ABAQUS to create a complete finite element representation as a CAE file. 

1.3.5 Effects of Inclusions Morphological Properties on Composites Responses 

To investigate the effect of microstructural pattern the following question should 

be answered: How can the mixture of different inclusions enhance the mechanical 

properties of PCMs, through utilizing a unified viscoelastic, viscoplastic, and 

viscodamage constitutive model for the host material? Thus, in the micromechanical 

simulations, the following phenomena should be studied: 

 Strain localization and shear banding. 

 Initiation of damage at the inclusion-matrix interfaces. 

 Energy dissipation through viscoelastic, viscoplastic, and viscodamage models. 

 Micro-damage propagation inside the matrix and around the constituent phases. 
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1.3.5.1 Strain Localization and Shear Banding 

In PMMA which is a glassy amorphous polymer, shear bands occur with no 

increase in volume while subjected to compressive loads. It means PMMA is governed 

by shear band phenomena rather than crazing in compression. Strain localized zones in a 

composite and their interaction with damage nucleation and propagation are considered 

and investigated. 

1.3.5.2 Energy Dissipation Through Viscoelastic, Viscoplastic, and Viscodamage 
Constitutive Models 

Since the inelastic work done by mechanical deformations dissipates energy 

which increases the temperature inside a material, this phenomenon can be considered 

especially when the material is subjected to high strain rate loadings. The change in 

temperature can be achieved by using the principle of maximum rate of energy 

dissipation (or the principle of maximum rate of entropy production). It states that the 

material dissipates energy in the easiest possible way (for more details see: Rajagopal 

(2000) and Abu Al-Rub and Darabi (2012)).Therefore, as presented recently by Khan 

(2011) and Darabi et al. (2012), a systematic thermodynamic framework for deriving the 

constitutive equations for the dissipative thermodynamic conjugate forces, in large 

deformation framework, are presented in Appendix E. In addition, the numerical 

implementation is done by adding subroutines in the well-known finite element software 

ABAQUS (2008) in the user materials subroutine UMAT. 
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1.3.5.3 Micro-Damage Propagation Inside Matrix and Around Constituent Phases 

One of the main parts of this research is studying the effect of constituents on the 

pattern of micro-damage propagation inside different composites. In addition, evaluating 

and comparing the total damaged volumes for different types of inclusions are the key 

point for better understanding the damage initiation and growth. On the other hand 

calculating the dissipated energy due to micro-damaged regions, along with the amount 

of damage density inside the composites, for different inclusions and morphologies 

scenarios, gives a comprehensive point of view of the realistic behavior of polymer 

composites. 

1.3.5.4 Initiation of Damage at Inclusion-Matrix Interfaces 

The significant increase in the yield strength with decreasing particle size is 

observed in (Kiser et al., 1996; Lloyd, 1994; Rhee et al., 1994), and may be taken as a 

hint in this direction. The interfacial interaction between the matrix and particles may 

have a significant effect on the macroscopic yield response and ultimate strength of 

PMCs. In other words, it is expected that as the particle size decreases, the interfacial 

energy increases, and the effects of the boundary layer thickness (BLT) on composite 

strength is significant. If the BLT is comparable to other material length scales, one is 

able to consider an effective BLT at boundaries in continuum simulations (Gudmundson, 

2004). But, if the BLT is negligible as compared to the length scales, then the associated 

energy to the boundaries can be used to simulate the effect of this layer. It should be 

noted that, the interface strengthening phenomenon can be characterized within strain 

gradient plasticity theory by incorporating an interfacial energy term in the internal work 
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that depends on the plastic strain state at the interface of the plastically deforming 

material (Abu Al-Rub, 2008; Abu Al-Rub and Voyiadjis, 2006b; Aifantis and Willis, 

2005; Gudmundson, 2004). But studying such phenomenon is out of the scope of this 

work, and strain gradient plasticity theory is not studied. Here, just the initiation of 

continuum damage for different kinds of inclusions are investigated at the interface of 

inclusions and polymer matrix. 
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CHAPTER II 
 

BACKGROUND AND LITERATURE REVIEW 
 

2.1 Introduction 

Composites made of thermoplastic polymers materials (as the matrix) along with 

nano particles and/or continuous fibers are attractive for mass production, because they 

combine several good features, such as the advantages of stiffness, strength and density, 

and are also beneficial from manufacturing and economics points of view. They have the 

potential for industrial and advanced engineering applications, including manufacturing 

of the components of the future light-weight armors, cars, and airplanes. However, these 

materials propose special challenges with regard to prediction of their physical 

properties, which arise from their evident time and rate dependency. The time and rate 

dependency of polymers lead to study of the viscoelasticity and viscoplasticity and 

damage of the matrix polymer, and its sensitivity to the thermal and mechanical history 

during processing. 

The goal of this study is to approach the prediction of the finite deformation of 

thermoplastic matrix composites. The modeling is accomplished at the microscale level 

of analysis, which deals with a microscale representation of the constitutive models for 

PMMA polymer matrix containing different types of inclusions. 

2.2 Factors Affecting Performance 

There are several factors that can control the mechanical properties and responses 

of a composite, like strengthening and softening mechanisms. In composite materials, 
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hardening can be subdivided to direct and indirect strengthening. Beside this 

phenomenon, the softening mechanisms also have significant influences on mechanical 

performance and failure behavior of composite materials. The two most important 

localized deformation mechanisms in glassy thermoplastics (here: PMMA) are crazing 

and shear banding (Bucknall, 1977; Kinloch and Williams, 1980). These phenomena 

have been suggested to be the two dominant energy-dissipating mechanisms in polymers 

by several researchers (Bucknall, 1977; Bucknall and Partridge, 1983; Sultan and 

McGarry, 1973), but others have raised some doubts on these claim (Kinloch et al., 

1983; Kunz-Douglass et al., 1980). 

2.2.1  Strengthening and Softening Mechanisms 

Some of the possible strengthening mechanisms for general composites and also 

polymer composites are proposed as: matrix strengthening, particle strengthening, and 

microstructure strengthening. When a discontinuous particle-based composite is 

subjected to tensile loading, the load is transferred from the surrounding matrix to the 

particles mainly through interfacial shear stress (Sheng et al., 2004). In other words, 

direct strengthening in composite materials comes from the load transferring from a 

softer material (host material which here is PMMA polymer) to the harder phase(s), like: 

nano-ceramics, nano-clays, and nano-metallic particles, or carbon nano tubes or fibers. 

This event is the main source of partitioning the stress and strain between different 

phases during deformation. Likewise, strengthening behavior of composite materials 

depends on the inclusions’ morphologies and volume fractions. Another reason for 

hardening is indirect strengthening, which results from the matrix molecular structure 
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(e.g., heavier molecular chains, entanglement and re-orientation of chains, semi-

crystallized regions). Moreover, plastic hardening can be assigned to the heterogeneous 

plastic deformations that are due to the plastic strain incompatibility at the interfaces of 

matrix and inclusions. For a polymer matrix, there are several other possible toughening 

mechanisms that have been proposed by several researchers: 

 Crack-tip blunting mechanism (Kinloch and Williams, 1980). 

 Particle deformation and crack bridging (Kunz-Douglass et al., 1980). 

 Cavitation-induced shear deformation or stress-relief (Donald and Kramer, 1982). 

 Crack pinning (which is a mechanism stop the progress of advancing cracks in 

composites proposed by Lange (1970)) (Zaiser et al., 2009). 

In addition, the softening mechanisms affecting the composite materials responses can 

be listed as follows 

 Strain localization and shear banding. 

 Debonding at inclusion-matrix interfaces. 

 Micro-damage in the host material (matrix). 

 Adiabatic heating due to inelastic energy conversion into heat. 

2.2.3 Effects of Crazing 

Crazing is a phenomenon that frequently precedes fracture in some glassy thermo 

plastic polymers. Crazing occurs in regions of high hydrostatic tension, or in regions of 

highly localized yielding, which leads to the formation of interpenetrating micro-voids 

and small fibrils. If an applied tensile load is sufficient, these bridges elongate and break, 

causing the micro-voids to grow and coalesce. As micro-voids combine, cracks begin to 
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form and evolve. A craze is different from a crack in a way that it can continue to carry 

load. Furthermore, the process of craze growth prior to cracking absorbs fracture energy 

and effectively increases the fracture toughness of a polymer. The initial energy 

absorption per area in a craze region has been found to be up to several hundred times 

that of the un-crazed region, but quickly decreases and levels off. Crazes form at highly 

stressed regions associated with scratches, flaws, stress concentrations and molecular 

chains in-homogeneities. Crazes generally propagate perpendicular to the applied 

tension. Crazing occurs mostly in amorphous, brittle polymers like PS, PMMA, and PC; 

and it is typified by a whitening of the crazed region. One of the main differences 

between crazing and shear banding is that crazing occurs with an increase in volume, 

while shear banding does not. This means that under compression, many of these brittle, 

amorphous polymers will demonstrate shear banding rather than crazing, as there is a 

contraction of volume instead of an increase. In addition, when crazing occurs, one will 

typically not observe "necking" or concentration of force upon one spot in a material. 

Rather, crazing will occur homogeneously throughout the material. 

2.2.4 Effects of Damage 

Experimental observations show the main mechanisms on fracture of composite 

materials are attributed to the presence of micro/nano inclusions along with the localized 

plasticity and damage defects (Fig. 2.1). They lead to non-uniform behavior in composites 

such that additional load causes failure mechanism occurring near the localized zones. 

Nano-clay composites have shown directional crack patterns that bypass the clay 
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agglomerates, and the cracks take tortuous paths between the regions of high clay 

concentration due to toughening mechanisms such as crack tip pinning and bifurcation 

 

 

Fig. 2.1. Transmission electron micrographs showing: (a) and (b) micro-voids in clay 
galleries; and (c) micro-voids ahead of a major crack tip (Khan et al., 2011). 
 

 

Fig. 2.2. SEM images of compact tension fracture surfaces of clay–epoxy nano-
composites. Increasing clay contents shows crack initiation (Khan et al., 2011). 
 

To illustrate the effect of clay particles on the perturbation of fracture surfaces; Fig. 2.2 

shows that the neat resin exhibited a typically smooth surface with a homogenous 

material flow. Upon addition of clay, the fracture surfaces become rough. It can be seen 

that the higher the clay contents, the rougher the fracture surfaces. Moreover, nucleation 

of micro-voids and -cracks due to de-cohesion of embedded particles or inclusions from 
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the host material is another reason for fracture. Also, hard phase fracture along with the 

growth and coalescence of developing voids and cracks and their neighbors under 

favorable stress directions with the help of plastic strain and hydrostatic-stress; 

ultimately lead to the complete loss of macroscopic load bearing capacity of specimen. 

Thus, the interfaces between different phases play an important role in the total strength 

and fracture toughness of LDCM (Bandstra et al., 2004; Dierickx et al., 1997; Lee et al., 

2005; Yuan and Misra, 2006).  For this purpose, see Fig. 2.3. 

 

 

Fig. 2.3. TEM of PP, 4wt% nanoclay composites showing uniform distribution of clay 
and the interface between PP and clay. Black regions are clay and white regions are 
crystalline lamellae (Yuan and Misra, 2006). 
 

In addition, the shear instability can be delayed by increasing the interfacial strength of 

the particle-matrix, which can postpone the debonding phenomenon, then micro-voids 

nucleation, and consequently micro-cracks propagation; hence, increasing the interfacial 

strength improves the total performance under various loading conditions. 

Based on these mechanisms, two main approaches that are identified as 

micromechanical damage models and phenomenological damage models have been 



24 
 

proposed to model the non-linear material degradation behavior due to damage. The 

phenomenological model stem from the concept of Kachanov (1958) who was a pioneer 

in continuum damage mechanics. Different forms of his approach have been applied for 

modeling the damage behavior of different materials (Bažant and Oh, 1983; Carol et al., 

1994; Murakami and Kamiya, 1997). The former model shows strong coupling between 

plasticity and damage as one smooth generalized yield surface that has been defined and 

an associated flow rule for both plasticity and damage will be utilized. However, Abu 

Al-Rub and Voyiadjis (2003) showed this model has some limitations. 

2.3 Large Deformation Generalization 

The elastoplastic or viscoelastic-viscoplastic constitutive relations for large 

deformation need finite strain theory. Such models have been vastly studied and also 

very significant results have been obtained (Cuitino and Ortiz, 1992; Green and Naghdi, 

1971; Hasan and Boyce, 1995; Kröner, 1960; Lubliner, 1986; Rajagopal and Srinivasa, 

1998; Simo and Ortiz, 1985; Weber and Anand, 1990). However, it is very difficult to 

evaluate a large strain constitutive model directly by only capturing some large 

deformation data sets. Actually, many elegant and practical elastoplastic models have 

been established and examined for different conditions and experimental tests. 

Nevertheless, the existing sophisticated and complex elastoplastic or viscoelastic-

viscoplastic constitutive laws for small strain conditions for materials such as: concrete 

and geotextiles (which are pressure-sensitive dilatant), asphaltic material (Darabi et al., 

2011), and polymer and polymer composites (Kim and Muliana, 2009), have been 

developed based on additive decomposition of strain (or strain rate) to elastic and plastic 
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parts. Furthermore, it would be difficult to convert them to a multiplicative 

decomposition based model. Besides, it is shown that an additively separation procedure, 

especially for Green-Lagrange strain measure tensor is possible, but some other 

considerations should be applied (Bažant, 1996). Bažant also proposed a transformation 

of Green-Lagrange finite strain tensor whose parameters almost show that the degrees of 

freedom can equivalently replace the small strain measure to other strain measures. He 

showed if the dependency of higher order terms of deviatoric strain tensor on the 

volumetric strain is taken into account, the strain tensor will be allowed to additively 

decomposed. However, here it is derived and shown that there exist several other items 

that should be applied to convert a small-strain based model to a finite strain one. 

Moreover, the calculations for large deformation problems are noticeably more 

complex than for small strain problems. Therefore, another possible strategy could be 

generalizing the existing constitutive laws that have been developed based on the infinite 

deformation concept to finite strain. This task can be accomplished by introducing some 

material parameters and/or applying some modifications to the models to provide the 

capability for capturing large deformation behavior. The first option has some 

disadvantages, since additional material parameters for generalizing a small-strain to 

large-strain model needs to be calibrated by some large deformation experimental tests 

(and also accepting the non-uniformity of the strain field). 

In the established well-known theorem for studying infinite deformation, the 

structure of elastoplasticity response of materials is conventionally built on introducing 

elastic and plastic strains and their rates. In this case, it is assumed that the infinitesimal 

strain may be additively separated to reversible (elastic) and irreversible (plastic) 
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components. By the advantage of incremental manner of elastoplastic behavior, the 

following rate form has been extensively introduced and reported (see: Bruhns (2009)) 

 e p       (2.1) 

in which,   is the total strain in a body, e  and p  are the elastic and plastic portions of 

strain tensors, respectively. For large elastoplastic deformations, the total deformation 

rate for characterizing the flow-like behavior of a material is the rate of deformation or 

stretching tensor, D , which is the symmetric part of the velocity gradient tensor 

(Lubliner, 1990). Then, a direct extension of the separation in Eq. (2.1) is 

 e pD D D   (2.2) 

where, eD  and pD  are the elastic and plastic stretching tensors, respectively. For the 

case of finite deformation, there generally exist different approachs for appropriately 

decomposing and deriving formulas for such constitutive laws (Naghdi, 1990; Xiao et 

al., 2006). As a result of this discussion, Bruhns (2009) categorized three different ways 

for describing a physically reasonable decomposition of finite elastoplasticity behavior, 

which are concisely explained in the following: 

1) The classical set of additively partitioning of the rate of deformation tensor, D , for 

describing finite deformation [see Eq. (2.2)]. 

2) The multiplicative separation of the deformation gradient to elastic and plastic 

components, which is commonly used in most descriptions of finite inelastic 

deformations (Rajagopal and Srinivasa, 1998) 

  e pF F F  (2.3) 
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where F  is the total deformation gradient of a distorted domain, eF  and pF  are the 

elastic and plastic deformation gradient, correspondingly. 

3) Based on the Lagrangian description, plastic strain PE  is introduced as an ascent 

primitive variable (Green and Naghdi, 1965), and the Lagrangian strain is additively 

split-up to elastic and plastic parts, as 

 e pE E E   (2.4) 

Here, similar to the previous equations, E  is the total Green-Lagrange strain in a body, 

eE  and pE  are the elastic and plastic portions of the Lagrangian strain tensors, 

respectively. For utilizing each one of the above approaches, there are some issues for 

decomposing the elastic and plastic portions of the response of material: 

1) In simulations of simple shear problems fictitious fluctuations were observed for 

some of the rates (Bruhns et al., 2001), and as a consequence of these deficiencies, 

the decomposition is believed not to be satisfactory describe finite elastoplasticity. 

2) It is shown that multiplicatively separating the deformation gradient tensor, along 

with the logarithmic rate and the Hencky strain is able to consistently combine both 

settings (Hibbitt et al., 2008). But unfortunately, the logarithmic strain is 

fundamentally complex in converting its work-conjugate stress tensor to either the 

second Piola-Kirchhoff (II-PK) or Cauchy stresses. 

3) In the third approach, nonetheless eE  is the elastic portion of strain, it is accurate 

only in the case of infinitesimal elastic deformation. It means such separation is 

acceptable when the elastic fraction of deformation is in small range. Thus, the part 

that here is so-called elastic component is introduced by the difference of E and pE . 
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Here, the reasons why Eulerian concept has not been selected for generalizing small to 

large deformation are explained. The Eulerian formulation problems of finite 

elastoplasticy are concerned with different objective rates that appear in different 

constitutive laws, and their dependency should be investigated, or such rates must be 

presented in a uniform method. On the other hand, because the Green-Lagrange strain is 

invariant in rotation; hence, it is proper to be hired for discretized (incremental) 

numerical analysis (Rolph, 1983). In Lagrangian type models, the material time 

derivative can be applied directly to the consistency condition, 0f  , ( f  is the yield 

surface) for the elastoplastic models, and the derivative via chain rule can also be applied 

to the tensors and tensor products that exist in this function. But, for the Eulerian 

relations this derivation cannot be directly applied, since integration and derivation on an 

unknown volume (current configuration) is not applicable (Bathe et al., 1975). 

Another similar question arises: “What should be done with Eulerian quantities? 

Which objective time derivative should be taken, and what would be the criterion to 

answer this question?” (Bruhns, 2009). Also, Simo and Hughes (1998) noted that in the 

Eulerian formulations framework, the objectivity principle implies that each constitutive 

relation is isotropic (i.e. the constitutive functions are invariant under orthogonal groups 

of rotations). Therefore, the constitutive models based on Eulerian formulation concept 

may be applicable only to isotropic materials, and if there is any sort of anisotropy like 

orthotropy or transverse isotropy, their functionality cannot be guaranteed. 

The other reason for selecting Lagrangian rather than Eulerian concept is that the 

Lagrangian strain measure and its work-conjugate stress pair (second Piola-Kirchhoff 
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stress) are frame indifferent, and the response does not change by observer. But, if any 

stress or strain in the current configuration is chosen, then the constitutive models should 

be derived along with stress and strain rates. For the sake of conciseness of this chapter it 

is not proved here, but the reader is referred to Johnson and Bammann (1984) for more 

details. Also, several researchers have shown that finite strain problems with constitutive 

models written in rate forms can lead to apparently unrealistic results (Cassenti and 

Annigeri, 1989). For example, Johnson and Bammann (1984) proved for simple shear 

problems in large strain range that oscillations in the shear stress is observable if 

kinematic hardening is used but will not occur if isotropic hardening is assumed. They 

showed these fluctuations are caused mainly by the use of the Jaumann rate of stress. 

An important key role to formulate the internal energy of deformable bodies is 

the energy conjugacy between stress and strain tensors. In some standard commercial 

finite element software such as ANSYS and ABAQUS, the incremental finite strain 

formulation that is not fully work-conjugate to the stress is being used (Ji et al., 2010). 

This means that the energy produced by stress increments on its strain increments pair 

does not provide the second-order accuracy for expressing the work-done in a body. In 

these softwares, specifically the stress increments are based on the Jaumann rate of 

Kirchhoff stress that is energy-conjugate with the increments of the natural (Hencky or 

logarithmic) strain tensor (note that the Kirchhoff stress itself is energy-conjugate with 

the rate of deformation tensor). However, in these finite element programs the stress 

increments correspond to the increments of Green-Lagrange strain tensor. Although this 

problem was emphasized (Bažant, 1971), demonstration of its significance in realistic 
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conditions has been lacking. Wooseok et al. (2010a) showed in buckling of a highly 

orthotropic columns and also sandwich columns in compression, which are very soft in 

shear, utilizing non-conjugate stress and strain measures can cause large error ( 100% ) 

of the critical load, even though the strains were in small range. Also, employing 

Eulerian strain needs a proper definition for stress measure which should be work-

conjugate to it. As discussed by Norris (2008), finding a proper work conjugate stress for 

Eulerian strain needs unique co-rotational form. Besides, using non-conjugate stress and 

strain tensors may be admissible for some materials. But, the elastic parts of strains as 

well as the total volumetric strains must be in the small range. Thus, the algorithm used 

should guarantee that the energy dissipation by large inelastic strains is nonnegative 

(Bažant et al., 2000). Using work conjugate strain and stress tensors is appropriate 

because the strain will be holonomic (path-dependent), and strain components can be 

characterized as meaningful deformation measures (Ji et al., 2010). Under these 

conditions, Lagrangian based models appear to be more reasonable and practical. 

It should be noted that employing these stress and strain measures has an 

important advantage, because constitutive models in large deformation range should take 

into account the objectivity concept. While deriving the constitutive laws for 

investigating large deformation, the rate of stress should be defined to be frame-

indifferent. Thus, different corotational rates have been defined (Johnson and Bammann, 

1984; Nagtegaal and De Jong, 1982) to guarantee that the quantity of stress is 

independent of the observer. However, each of the corotational rates is proper for certain 

types of materials and one cannot pick them arbitrarily. Moreover, using the corotational 
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rates result in some computational issues such as the Jaumann rate creates peculiar 

oscillations in shear stress response, and the Green-Naghdi and other rates have been 

reported to result in residual stress (Meyers et al., 2003; Zhou and Tamma, 2003). One 

way to handle this issue is hiring the stresses and strains that are defined in the natural 

state (material configuration), because such stress and strain fields are quantified in the 

same way by different observers. Henceforth, to ensure the objectivity of the material 

response, the constitutive laws can be expressed in terms of the II-PK stress and its 

energy conjugate strain pair (Green-Lagrange strain). This is one advantage of using 

Lagrangian framework. 

2.4 Large Deformation Viscoelastic Model 

Polymers have shown a wide range of interesting and desirable properties. The 

remarkable mechanical properties of polymers and polymer composites are due to the 

arrangement and inter-linking of their chains (Painter and Coleman, 1997). As the use of 

polymeric materials increases, a comprehensive understanding of these materials 

becomes necessary to perform better economical designs. Extensive attempts have been 

devoted to develop mathematical relations for the small deformation regime 

(Christensen, 2003). The presented models for finite strain viscoelasticity all rely on 

assumptions that have been debatable (Boyce et al., 1988; Ehlers and Markert, 2003; 

Haupt et al., 2000; Makradi et al., 2005; Mott et al., 1993; Reese, 2003). From a 

continuum point of view, much less emphasis has been made for multiaxial finite 

deformation subjected to a wide range of strain rates and temperature (Khan et al., 

2006). Ogden (1997) noted that the polymers have displayed very complicated 
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properties rather than elastic and viscous behavior, and moreover continuum mechanics 

method does not consider the molecular nature of polymers and simply treats them in 

terms of elasticity rules for solid parts, and as fluid for viscous features. With the 

purpose of making qualitative predictions for the behavior of a body through using a 

constitutive model, the description of stress as a function of deformation history or vice 

versa, should be considered in a way that is convenient for both mathematical and 

experimental aspects. 

The theory of classical linear viscoelasticity modeling has been primerily 

presented in two main systems: differential forms and hereditary integrals. Both can be 

derived and formulated to take hereditary effects into account from irreversible 

thermodynamics starting point. Lockett (1972) stated that the hereditary integrals are 

more general in comparison to the other approach, even though the differential forms 

have some advantages as 

1) Utilizing the stress/strain or stress/strain rates parameters is more appealing than the 

creep and relaxation kernel functions. 

2) The parameters in differential forms can be related directly to the spring and 

dashpots in the rheological model. 

On the other hand, the reports by Rooijackers (1988) and Morman (1985) indicate that 

the integral models are preferred, because the most differential models are difficult to 

apply. In the literature, different types of integral models are identified. It is possible to 

develop Multiple Integral Models (MIM) from functional theories, and usually these 

derivations are based on thermodynamics in systematic methods. Nonetheless, these 
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models are generally too complex to be practical, because determination of the large 

amount of material parameters in such models is not reasonable in practice, and 

furthermore, the numerical calculations are too expensive for practical applications. 

Several non-linear theories for viscoelastic materials have been developed, and 

most of them have similar structures. In these models as a whole, the same as in linear 

cases, the stress field depends on the strain history or conversely. Some of these models 

are established based on physical concepts and some are prepared and purely built on 

just capturing experimental data. These developed models can be categorized in three 

main groups (Khan et al., 2006), as the differential relations, single integrals, and MIM. 

The main disadvantage of MIM is that the polynomial expression can be continued to 

higher orders and leads to many material parameters, and determination of such 

functions is practically impossible. For instance, in the MIM proposed by Green and 

Rivlin (1957) the behavior was assumed to be isotropic, which forces some complexity 

to the model in that level. Also, the material functions in the MIM technique depend on 

many integrand variables. Although MIM offers a realistic non-linear viscoelastic model 

because each function and parameter has a physical meaning, for determining these 

variables in these models unreasonable number of experimental data is required. 

A number of single integral models for viscoelasticity can be found, and most of 

them are only capable for describing linear viscoelasticity. Such models are generally 

developed based on empirical or semi-empirical considerations (Caruthers et al., 2004; 

Lockett, 1972; Morman, 1985). Coleman and Noll (1961) derived one model using a 

single integral constitutive equation to characterize the behavior of isotropic non-linear 
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incompressible solid, which is based on a the theory of linear viscoelasticity in large 

strain range through the concept of fading memory. O'Dowd and Knauss (1995) also 

proposed a single integral model in which the stress is II-PK and Boit is the strain 

measure. In this model, the non-linear behavior is considered in the model by a function 

depending on the three invariants of the Boit strain tensor. The model is easy to 

implement, but the relaxation function has more variables comparing to other single 

integral models. 

Pipkins and Rogers (1968) constructed a model based on an assumed non-linear 

behavior of a material to a series of step strain inputs. The proposed integral series 

formulation was derived for detecting the non-linear response of an arbitrary stress or 

strain history. In their method, each term has a definite intrinsic meaning that is 

independent of the choice of strain measure. Also, the first term in their equation is a 

single integral with a non-linear integrand that can be determined by a single step creep 

or relaxation test. Moreover, Pipkins and Rogers (1968) showed that the experiments in 

most cases agree with the single integral approximation, which is given by just the first 

integral term alone. To generalize their model to a finite strain range, they proposed to 

replace the Cauchy stress,  , with its Kirchhoff transformed quantity as 
1 TF F 

 (the 

same as the II-PK stress measure without considering the effect of volume change 

mapping scalar, J ), and also exchanging the small strain,  , with the right Cauchy-

Green tensor (
TC F F ). Moreover, the initial strain conditions from 0   should be 

changed by C I . One of the advantages of Pipkins and Rogers constitutive equation is 

that it involves fewer relaxation functions, and has the following general form 
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where   is an unknown scalar, F  is the deformation gradient tensor, and  ;R C t  is the 

strain dependent relaxation function brought by a single step strain input (Wineman, 

1972). In addition, Pipkins and Rogers (1968) stated the role of stress and strain can be 

interchanged to obtain the creep response instead of stress-relaxation. Also, it was noted 

that the choice of the strain tensor can be fairly arbitrary with any other permissible 

strain measure. However, the strain and stress measures must be work conjugate to make 

the model stable and prevent of any undesired fluctuations and errors in the results. 

Furthermore, Schapery (1964, 1966) presented a single integral model based on 

Gibbs energy for non-linear viscoelastic materials, that has been widely used. From the 

literature, it can be understood that the model performs reasonably well for many 

material cases, and especially polymers. This model is able to take into account the 

anisotropy and internal dissipation (Rooijackers, 1988). 

It is evident that the macroscopic response of a system (body) depends on a wide 

number of quantities that each relate to an individual phenomenon. In addition, all 

systems interact with their surroundings that cause inevitable fluctuations of those 

quantities. If only the internal energy (from all the quantities) is allowed to fluctuate, and 

the other ones are kept constant, then the temperature of the system is meaningful and 

measurable. Afterwards, the system's properties can be described appropriately using the 

Helmholtz free energy as the thermodynamic potential (when the volume of the system 

is constant). In the other case, if both the internal energy and the macroscopic volume of 
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the system fluctuate; the Gibbs energy will be used, in which the system's properties are 

determined by temperature and pressure. 

2.5 Unified Viscoelastic, Viscoplastic and Viscodamage Model 

Numerous experimental observations and studies have shown that the responses 

of both pure polymers and polymer composites are in the class of materials with time-, 

temperature-, rate-, and pressure-dependency that exhibit both recoverable (viscoelastic) 

and irrecoverable (viscoplastic) deformations, even under relatively low stress levels. As 

the stress increases, the dependent responses become more pronounced (Kim and 

Muliana, 2009). For example, creep tests on high-density polyethylene (HDPE) (Lai and 

Bakker, 1995), polycarbonate (Frank and Brockman, 2001), and aramid and polyester 

fibers (Chailleux and Davies, 2003, 2005) show a combination of both viscoelastic and 

viscoplastic responses even at the room temperature and for short loading times. It has 

been observed in many types of polymers (Crissman and Zapas, 1985; Lai and Bakker, 

1995; Zapas and Crissman, 1984) and polymer composites (Megnis and Varna, 2003; 

Pasricha et al., 1995; Ségard et al., 2002; Tuttle and Brinson, 1986) that creep strains are 

not entirely recovered even after sufficiently long recovery periods. These permanent 

strains are attributed to the changes in polymers mulecular structure during deformation, 

plastic flow localization, expanding and opening of the molecular chains (rearrangement 

of polymer chains), that all cause micro-cracks and micro-voids in pure polymers. For 

polymer composites, particle-matrix debonding and also interactions between particles 

and matrix during the loading time (when the applied loads transfer to inclusions) have 

been observed as the source of permanent deformation (Bocchieri, 2001; Megnis and 
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Varna, 2003). Thus, to better represent the complex behavior of polymers and polymer 

composite materials (PCMs), the combined effects of viscoelasticity, viscoplasticity, and 

viscodamage (i.e. delay or time-dependent damage) have to be included in the 

constitutive modeling of these materials. Therefore, viscoelastic, viscoplastic, and 

continuum damage mechanics models are generally the most successful for this goal. 

At relatively low stress levels, creep in polymeric materials can be generally 

described using linear viscoelastic models. The most common linear viscoelastic models 

are the integral-based models that are built on the Boltzmann superposition principle 

(Findley and Onaran, 1974). But, most polymers are known to exhibit non-linear 

viscoelastic behavior (i.e. creep and relaxation moduli are stress and strain dependent, 

respectively), especially at relatively higher stresses and/or temperature levels. This type 

of non-linearity can be modeled by using Schapery’s non-linear single integral 

viscoelastic constitutive model (Schapery, 1969b). Although finding proper values or 

functions for its non-linear parameters for this model in some cases may be difficult, the 

non-linear viscoelastic response of polymers and PCMs can be well-predicted by 

applying Schapery-type non-linear viscoelastic models (Christensen (1966); Schapery 

(1969b, 1974, 2000); Sadkin and Aboudi (1989); Haj-Ali and Muliana (2004). 

In several constitutive models, the viscoplastic (unrecoverable) deformations are 

considered as non-linear functions of stress and time. For this purpose, Perzyna theory 

(Perzyna, 1971) has been widely used for predicting the permanent deformations in 

polymers and polymer composites. Chailleux and Davies (2003, 2005) have shown that 

Perzyna’s viscoplastic model is able to explain the viscoplastic responses of aramid and 
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polyester fibers. Recently, viscoplastic constitutive models of polymers based on an 

overstress that has non-linear rate-dependent behaviors have been formulated (Colak, 

2005; Hall, 2005; Krempl and Ho, 1998). Some reviews on currently developed 

constitutive viscoplastic models for polymers can be found in Colak (2005). 

In addition, a non-linear viscoelastic and viscoplastic constitutive model derived 

from thermodynamics framework was proposed by Schapery (1997), and was employed 

and modified by Kim and Muliana (2009) through applying a recursive iterative method 

to implement this viscoelastic-viscoplastic constitutive model. They showed that the 

coupling of the non-linear viscoelastic model of Schapery and Perzyna’s viscoplasticity 

model is reasonable for accurately predicting the non-linear mechanical response of 

polymers at different stress and temperature levels. However, the changes in materials 

microstructure during deformation (such as expanding, opening, and breaking of the 

molecular chains of polymers) cause these materials to experience a significant amount 

of micro-damage (micro-cracks and micro-voids) under various loading conditions, 

where specific phenomena such as tertiary creep, post-peak softening behavior of the 

stress-strain response, and degradation in mechanical properties cannot be explained 

only by viscoelastic and viscoplastic constitutive models. Also, the effect of loading 

history on polymers is the outcome of the evolution of the microstructure state of 

material which has been experimentally revealed to depend on: (1) Internal energy 

(Hasan and Boyce, 1993; Oleynik et al., 1990), (2) Free local volume (Hasan and Boyce, 

1995), and (3) Bi-refringence (Arruda and Boyce, 1993). 

While exploring the polymers behavior, because the deformation is in the range 

of large strain, the associated volume changes are also no longer small; thus, taking in to 
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account the FLVs have a pronounce effect on the material response (O'Dowd and 

Knauss, 1995). For incorporating the effect of the free volumes, O’Dowd and Knauss 

introduced this phenomenon as a function to modify the time of relaxation. They also 

showed that there is almost no recovery of strain when the material is unloaded to zero 

stress state, which is mostly induced by the changes in the free volume. The other reason 

for considering the effect of FLVs is tha, in reality the yielding phenomenon in polymers 

occurs as the result of highly inhomogeneous deformations. Therefore, the effects of free 

volume have a key role in addressing the time dependent description of polymers. 

Hasan and Boyce (1995) phenomenologically illustrated the mechanisms and 

effects of the free volumes on amorphous polymer behavior. Briefly, they considered an 

initial configuration with no transformation strain energy, such that polymer in this state 

has a number of sites with possible meaningful transformation. During the initial stages 

of deformation (at low stress levels) only the regions containing high FLV can transform 

loads at meaningful rates, and the related transformation strain energy is stored 

elastically in the relatively rigid surroundings (lower FLV). By increasing the stress, the 

regions with lower FLV will be appropriate and reachable for carrying load, and the 

response becomes highly non-linear. Now, further energy is stored in the material by the 

creation of new defects (more free volume sites). The creation of these new soft sites 

reduces the macroscopic capacity for carrying loads. Throughout such strain softening, 

the material state shows the evolution of a steady state flow condition that is the outcome 

of numerous FLV sites that leads to continuous flowing. In their model, they assumed 

the changes of the free volume are a function of pressure, time, and temperature. 
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In order to incorporate the effects of the FLVs, in another approach, Anand and 

coworkers introduced a scalar parameter as the internal state variable,  , into the 

Helmholtz free energy to characterize the FLV (Anand and Ames, 2006; Anand and 

Gurtin, 2003). This variable enables the model to capture the highly non-linear stress-

strain behavior that leads the yield-peak and gives rise to post-yield strain softening 

(since the local free-volumes associate with certain meta-stable states) (Gearing and 

Anand, 2004). 

To date, less emphasis has been placed on predicting the damage evolution in 

polymers. Schapery (1975) developed a damaged-viscoelastic-viscoplastic model 

according to the laws of thermodynamics. His model is based on these concepts: (i) the 

elastic-viscoelastic correspondence principle to model the linear viscoelastic behavior of 

the material; (ii) the continuum damage mechanics for modeling damage evolution; and 

(iii) the principle of time-temperature superposition for including time, rate, and 

temperature effects. Items one and two are characterized through the pseudo strain 

concept. But, Schapery’s viscoelastic-viscoplastic-damage model has some limitations, 

as it can be used only for predicting viscoplasticity and damage evolution in tensile 

stresses. In addition, it behaves as a linear viscoelastic model, without considering the 

temperature and stress levels, for the small strain range. 

Seidel et al. (2005) introduced a model for predicting the evolution of damage in 

viscoelastic particle-reinforced composites in which the damage parameters correspond 

to the time-varying area fraction of the growing voids with respect to the cross-sectional 

area of the representative volume, which was seen as an improvement to Yoon and 
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Allen’s model (1999). This model is developed for cohesive zones, without considering 

the viscoplastic response. Also, Zhang and Ellyin (2004) took into account the damage 

evolution for investigating the non-linear viscoelastic behavior of fiber-reinforced 

polymer laminates, but this model did not consider the effects of viscoplastic behavior. 

Moreover, this damage evolution law acts upon smeared cracking, and it does not have 

the capability to distinguish between time, rate, and temperature dependent behaviors.  

The main goal and focus of this work is to introduce a viscodamage model and to 

couple it to the non-linear viscoelastic and viscoplastic constitutive models for predicting 

the highly non-linear response of polymers in the softening region after post peak yield. 

Surprisingly although there are several damage models for polymers, to the author’s best 

knowledge, few studies have been focused on coupling of non-linear-viscoelasticity, 

viscoplasticity, and viscodamage to predict the thermo-mechanical behavior of polymers 

and PCMs. It is notable that there are only a few coupled viscoelastic, viscoplastic, and 

rate dependent damage models that can be used to predict the mechanical responses of 

polymers and PCMs at different temperatures, stress levels, and strain rates. 

One of the challenges in the modeling of polymers and PCMs is that the damage 

nucleation and growth depend on rate of loading, temperature, and the history of 

deformation. Therefore, a combination of non-linear thermo-viscoelasticity, thermo-

viscoplasticity effects, and a rate- and temperature-dependent damage model (thermo-

viscodamage) seems unavoidable. The terms “thermo” and “visco” are used in here to 

respectively address the temperature- and time- and rate-dependent behavior of 

polymers. Thereby, as mentioned above, this study attempts to bridge the gap and 

propose a general, single, accurate, reliable, and practical constitutive model to 
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overcome the limitations of the current models for predicting the macroscopic behavior 

and evolution of damage in polymers. The damage model which was first proposed by 

Darabi et al. (2011) for HMA (Hot mixed asphalt) materials is utilized in this work. 

2.6 Representative Volume Element for Microstructure 

One of the main objectives of the mechanics of heterogeneous materials is to 

gain their effective properties from the knowledge of the constitutive models and spatial 

distribution of their components (Kanit et al., 2003). For the purpose of solving this 

issue, several homogenization methods have been established. These research studies 

have reached a high level of complexity and efficiency (Kanit et al., 2003), especially in 

linear elasticity and thermal conductivity. These techniques can be found in literature 

(e.g. Sanchez-Palencia and Zaoui (1987), Nemat-Nasser et al. (1993)). Besson et al. 

(2001) and Jeulin and Ostoja-Starzewski (2002) have also extended the methods for 

some certain nonlinear properties. Severe limitations for the macroscopic linear 

properties of composites exist, such as those noted by Kanit et al. (2003): 

 In some works, the well-known Voigt and Reuss bounds is hired. These models take 

into account only the volume fraction of the constituents. 

 Incorporating the notion of isotropic distribution of phases has been considered by 

Hashin and Shtrikman (1963). 

 In the case of random particles in a media, the third order bounds were achieved in a 

general case by Beran (1965). Later, the case of two-phase materials was probed by 

Miller (1969) and Milton (1982). 
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 The incorporation of more statistical information on the heterogeneous distribution 

(random) of inclusions in a host material leads to a hierarchy of bounds, as suggested 

by the systematic theory of Kröner (1980), and also in Torquato and Stell (1982), 

Torquato and Lado (1986) and Torquato (1991). 

Several remarkable methods for predicting the constitutive behavior of the FRCs 

(fiber reinforced composites) have been introduced. Among them, the analytical homo-

genization approach based on the Eshelby’s strain concentration tensor (Eshelby, 1957) 

(in which the fibers are considered as a second phase inclusion) is greatly supported and 

widely used. Besides, significant success has been achieved by employing some 

techniques based on the Mori-Tanaka’s mean field method (Mori and Tanaka, 1973; Pan 

et al., 2008). These methods are developed and employed to determine the material 

properties for unidirectional composites as a function of fiber volume fraction and aspect 

ratio. These methods have limitations and fail for studying FRCs with different aspect 

ratios and/or curvy-linear shape (waviness) of fibers. It should be noted that some of the 

restrictions are optimal in the sense that a definite microstructures could be designed and 

give the exact value of the bound as the effective property of the composite. 

Due to the computational efficiency of homogenization techniques, they can be 

employed in zooming-window analyses for statistically evaluating the sample size 

effects on the simulated response of the materials; nevertheless, these methods do not 

yield any information for stress–strain response on the micromechanical level (Pan et al., 

2008). Actually, predicting the complicated behavior of composite materials that contain 

inclusions with complex geometries and distributions by utilizing the homogenization 
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methods is almost impossible. However, investigating and modeling of their thermo-

mechanical and fracture properties are still fields of current research. 

These analytical models are limited for predicting the effective response of even 

simple composites let alone when complex microstructural geometries are required to be 

studied. The micromechanical models based on representative volume element (RVE) 

have been widely used to predict the effective inelastic and non-linear characteristics of 

composites with complex geometry of microstructures. For a microstructure containing 

several properties, the bounds are too much to give a useful approximation of the 

effective properties. On the other hand, estimations like self-consistent models can give 

a practical sensible prediction, but are aproperiate for a very specific morphology of 

constituents (Kanit et al., 2003). These reasons lead to numerical methods such that the 

next available approach is enabled through using the powerful computers and advanced 

commercial finite element software, like NASTRAN, PATRAN, PRO-E, ABAQUS, and 

ANSYS. Indeed, it is possible to virtually test (simulate) the material behavior directly 

using 3D finite element method (FEM) on a number of statistically representative 

geometric entities, referred to as RVEs (Duschlbauer et al., 2006; Gusev, 1997; Kari et 

al., 2007; Meraghni et al., 2002). The notion of optimal designing materials based on the 

virtual testing (numerical simulations) of microstructures can be conducted, if a large 

quantity of numerical-geometrical experiments for different types of materials and 

microstructures can be carried out in an automatic systematic way. 

The next stage after developing a robust matrix constitutive model in the 

micromechanical modeling approach is the creation of an RVE for virtually testing the 

composite materials. One of the fundamental key points of the FEM study is the 
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recognition and generation of proper RVEs, through which the effective homogeneous 

material properties of the composite may be derived. In definition, an RVE is a statistical 

representation of material (Hill, 1963); in another word, an RVE is assumed to represent 

the physical property of a composite material within a certain framework. Fig. 2.1 

depicts this concept. Thus, according to this background, one RVE must be large enough 

such that it contains a number of inclusions in a heterogeneous material, and the 

effective homogenized properties that can be derived from the RVE represent the true 

material characteristics in the macroscopic scale. 

 

 

Fig. 2.4. Graphically illustrating the definition of an RVE that represents a domain. 
 

The essential question is how can the geometry of a desired RVE at the micro-

level (on which FEM is performed) be identified and generated numerically. Obviously, 

it depends on the morphological geometry of the microstructure of the composite 

material. Henceforth, vast efforts have been dedicated to model simple geometries such 

as a unit cell containing one sphere or one fiber in 3D. Besides, many researchers have 

generated 3D unidirectional fibers in 3D RVEs domains. However, for the case of 
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composites containing fibers, the identification of an RVE directly relates to the woven 

fibers (Ivanov and Tabiei, 2001; Quek et al., 2004), and also fibers in laminates 

configuration (repeatable architecture composites) (Caiazzo and Costanzo, 2000). 

Several researchers mentioned that for composite materials containing random inclusion 

arrangements, numerically constructing an RVE is not straightforward (Böhm et al., 

2002; Duschlbauer et al., 2006; Gusev et al., 2002; Tu et al., 2005). But in this work, in 

Chapter 6, it is shown and explained how to solve this issue. 

Some researchers have developed special codes for automatically generating 

RVEs (Mishnaevsky, 2007; Wang et al., 2011), based on creating multi-particle unit 

cells for nano composites. For instance, Meso3DFiber was developed by Mishnaevsky. 

It provides straight fibers as shown in Fig. 2.5. The reader is referred to Chapter 6 of this 

dissertation to compare the complexity of the generated models by the developed 

RVE_Maker software by the auther and the RVEs generated by Meso3DFiber software. 

 

                               

Fig. 2.5. 3D unit cell: (a) with 20 straight fibers, and (b) small chopped fibers in random 
orientation, generated by Meso3DFiber software (Mishnaevsky, 2012; Mishnaevsky and 
Brondsted, 2009). 

(b)(a)
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CHAPTER III 
 

LARGE DEFORMATION GENERALIZATION OF INFINITE 

VISCOELASTIC AND VISCOPLASTIC MODELS BASED ON  

GREEN-LAGRANGE STRAIN 
 

3.1 Introduction 

Investigating large deformation behavior needs constitutive models developed 

based on finite strain theory, and for this purpose several models for polymeric materials 

have been proposed. However, assessing a large strain model directly by large 

deformation data is difficult, because the strain and stress fields are non-uniform in the 

large deformation range. Because, there are many well-established elastoplastic models 

that have been proposed and examined by various research groups for a significant time; 

thus, one approach for studying large deformation behavior is extending the available 

models that are built on small strain concept to the finite deformation framework. 

The purpose of this chapter is providing and introducing a method to extend a 

small strain constitutive model to an identical large deformation model. Hence, the 

overall items and derivations that should be considered for such generalization are 

explained. The total Lagrangian strain is additively partitioned into its elastic and plastic 

components, which is based on the multiplicative decomposition of deformation 

gradient. This separation technique, when is applied, can operate at the kinematics level. 

Therefore, this procedure can be utilized for generalizing a wide class of independent 

infinite elastoplastic constitutive models (that are developed according to additive 
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decomposition of elastic and plastic portions of deformation) to their equivalent finite 

models in the finite deformation range (which is controlled by the framework of the 

additive/multiplicative decomposition of deformation gradient). The recommended 

numerical algorithm is developed in such a way that the extension from standard small-

strain formula to large-strain context is straightforward. 

3.2 Stress and Strain Energy Conjugacy 

There are various measures for stress and strain that describe a domain subjected 

to external loads. Any type of stress can be hired to formulate the internal energy in the 

domain. On the other hand, when a certain strain measure is used for explaining the 

deformation then the counterpart stress variable, which should be combined with the 

strain, cannot be selected arbitrarily. The ideas of the concepts and definitions of stress 

and strain are interweaved, no matter of the existence of a strain energy function (Başar 

and Weichert, 2000). At the most basic levels, the stresses and strains are related through 

the mechanical power; thus the rate of work-done per unit current volume of a body can 

be mathematically expressed as (Norris, 2008) 

 tr( ) tr( )L D w     (3.1) 

where   is the Cauchy stress, L  is the velocity gradient, and D  is the rate of 

deformation (stretching) tensor (symmetric part of L ). Even though it can be useful to 

introduce a reference configuration, this concept for work-conjugacy is independent of 

the notion of configuration. Now, let’s define T  and E  be the stress and strain 

associated with the reference configurations, respectively; then T  and E  are mutually 

work-conjugate if they satisfy 
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1

tr( ) det( ) tr( )TE w F TE w
J

      (3.2) 

where F  is the deformation gradient between the current and reference descriptions, and 

the scalar factor det( )F  shows the change in volume between the current and reference 

states. Eq. (3.2) is usually used as the starting point for defining a stress measure. For 

developing a constitutive model, the choice of the strain, E , is not unique and it depends 

on the physics of the material that is being modeled. However, selecting the strain 

measure fixes the definition of stress with respect to the work-conjugacy relationship in 

Eq. (3.2). It is surprising but true that the same simple connection is not applicable to the 

relation between Eulerian strain and the Cauchy stress or Kirchhoff stress (that both are 

in the current configuration). Actually, the problem is the definition of a strain such that 

D  . But, since the Eulerian strain is in the current configuration, a particular 

corotational rate for strain measure tensor is needed to be sought, in such a way that the 

strain rate gives the deformation rate, as: D


 . 

Xiao et al. (1998) proved that there exists a unique solution according to the 

Hencky strain Ln( )V  (V is the left Cauchy stretch tensor in polar decomposition) 

combined with the logarithmic rate. The fundamental relation for Eulerian conjugate 

stress is based on the conclusions of Xiao et al. (1997) work that states 

 
log

Ln( )V D


  (3.3) 

where log  is the objective corotational rate defined by the logarithmic spin. But 

deriving and implementing the natural strain and its rates is burdensome. 
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The major difference between Lagrangian and Eulerian work-conjugacy is that 

the Eulerian requires the consideration of the corotational rate, which is quite arbitrary, 

but each of the rates can be approperiate for modeling certain types of materials. On the 

other hand, since Lagrangian strain is in the reference configuration, there is no need to 

concern about the corotational rate. Norris (2008) has shown that every acceptable 

Eulerian strain measure, ( )f V , with respect to the definition of the function f , is 

associated with a unique corotational rate, so-called the f-rate, where the skew-

symmetric matrix f  is called the f-spin or f-rate and introduced as 

 f D    (3.4) 

in which   is the vorticity or spin tensor (the skew-symmetric part of velocity gradient), 

and the fourth order projection tensor,  , is explained based on stretch and identity 

tensors, as 

      * 1 2 2( )V I I V f V V I I V V I I V               (3.5) 

The *( )  symbolizes the pseudo-inverse operator of the tensor, and from now on, I  is 

the identity tensor. The logarithmic rate ( log ) is a special case of the f-rate ( f ) 

which corresponds Ln( )V  to the stretching tensor, D . This fundamental result (Xiao et 

al., 1997) for the logarithmic rate is generalized to arbitrary Eulerian strain measures, 

( )e f V , through 

   
log

( ) Ln( )e f V V D


    (3.6) 

Now, for investigating the work-conjugacy, Eqs. (3.1) and (3.2) are revisited, such that 

 
log

tr( ) tr( )e D 


  (3.7) 
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Considering ( )f V  and Ln( )V  are invertable and also they can commute (i.e. 

AB BA ), and since the above equation should be valid for all D ; therefore, the stress 

conjugate to the general Eulerian strain measures, ( )f V  , is 

   ( ) Ln( ) (for logarithmic spin)f V V     (3.8) 

Or in a straightforward formula, Eq. (3.8) can be expressed in spectral decomposition 

form as 

 
1 1

Ln( ) Ln( )
1 (for logarithmic spin)

( ) ( )

n n
i jf

i j
i j i j

V V
f f
 

  
  

 
      

  (3.9) 

The conjugate stress that can be found through using the f-rate is optimal in the sense 

that it is the closest conceivable stress to the Cauchy stress. In other words, this strain 

rate can get the actual stretching tensor, D . Also, the optimal modified stress, f , is 

defined by the arbitrary function f through the following equation 

 
1

1
[ 1]

( )

n
f

i i
i i i

V V
f

  
 

     (3.10) 

Xiao also showed the modified stress, f , can also be reduced to the Cauchy stress, if 

and only if: ( ) Ln( )f V V . Hence, this uniqueness is valid only for the logarithmic rate, 

and shows how the conjugate stress in that case is related to the modified stress, f . 

This achievement supports the results obtained by Xiao et al. (1997) for the logarithmic 

rate and the natural (Hencky) strain measure, when the idea of the logarithmic rate to 

arbitrary strain functions is generalized through the strain dependent spin f . 
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In the following, it is shown that the II-PK stress and the GL strain are work 

conjugate. Afterwards the work conjugacy of Kirchhoff stress and the Euler-Almansi 

strain will be studied. 

3.2.1 Second Piola-Kirchhoff Stress and Green-Lagrange Strain Work Conjugacy 

The II-PK stress and the GL strain in continuum mechanics are frequently used, 

and are defined as 

  1 T 1
and

2
T J F F E C I     (3.11) 

where TC F F  is the right Green-Cauchy tensor. The time derivative of Green-

Lagrange strain can be derived as
 

    T T1 1

2 2
E C F F F F      (3.12) 

Also, the work-done per unit reference volume of material in Eq. (3.1) is

tr( ) tr( )ij jk ij jiTE T E T E    . Therefore, one can say 

  1 T T T

2

JTE F F F F F F      (3.13) 

In indicial notation, the trace of TE  can be shown as 

 1 T T T 1 T T 1 T T

Part (1) Part (2)
2 2ir ri ik kl lr rm mj rn ni ik kl lr rm mi ik kl lr rn ni
J JT E F F F F F F F F F F F F F F       

 
    
 
 

    
   (3.14) 

Now, the terms in parts 1 and 2 can be simplified as follows 

      
         

T1 T T T T 1 1 1

T

Part (1): ik kl lr rm mi kl lr rm mi ik kl mr rl mi ik

kl ml mk kl lm mk kl lm mk kl lk

F F F F F F F F F F F F

L L D D

  

      

      

   

  

 (3.15) 
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The same as Part 1, one can come up with Part 2, as: 1 T T
ik kl lr rn ni kl lkF F F F D    . 

Therefore, the trace of energy increment can be written as 

  tr( )
2ir ri kl lk kl lk kl lk
JTE T E D D J D        (3.16) 

Thus, the simplified expression for the work-done shows 

  1 1
tr( ) kl lk kl lkw TE J D D

J J
     (3.17) 

Hence, Eq. (3.17) along with the above derivations demonstrations that the II-PK stress 

and the GL strain are work conjugate. 

3.2.2 Kirchhoff Stress and Euler-Almansi Strain Work Conjugacy 

The Kirchhoff stress and the Euler-Almansi strain in continuum mechanics are 

defined as
 

  11
and

2
T J e I B     (3.18) 

where TB FF  is the left Green-Cauchy tensor. The time derivative of Euler-Almansi 

strain is
 

    1 1 1 T T 11 1

2 2
e B B B B FF FF B         (3.19) 

By replacing 1 T 1 T 1( )B FF F F      into the recent equation, one can get 

    T 1 T T T 1 T 1 1 T T T 11 1

2 2
e F F FF FF F F F F FF F F F F                 (3.20) 

Eq. (3.20) may be rearranged as 

    T 1 1 1 T T T 1 T 11 1
( ) ( ) ( ) ( )

2 2
e FF FF FF FF B L L B           (3.21) 
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Since, B  is symmetric and L D    ( D  is symmetric, and   is skew-symmetric), 

therefore 

 1 1B L B D   (3.22) 

Thus, the rate of Eulerian strain e  may be rewritten as 

  1 11

2
e B D DB    (3.23) 

Now, for exploring the work conjugacy, one has to show the following equivalency 

 
?1

tr( )T e w
J

   (3.24) 

By substituting Eq. (3.18) and (3.23) into Eq. (3.24), the following relation has to be 

studied 

  
?

1 11
tr

2
B D DB w        (3.25) 

In indicial form, it can be expressed as 

  1 1

2ir rj ik km mj kn nj
JT e B D D B     (3.26) 

With respect to Eq. (3.26), one can write 

  

    1 1 1 1

Part 1 Part 2

tr( ) tr tr
2 2ik km mj ik kn nj ik km mi ik kn ni
J JT e B D D B B D D B      

 
    
 
 

    (3.27)
 

Now, in order to simplifying Parts 1 and 2, it should be recalled that: 1 1B D B L  ; 

therefore, these parts may be expanded as 

   
   

11 1 T 1 T 1 1

11 1 T 1 T 1 1

Part 1:

Part 2:

ik km mi ik km mi ik kp pm mq qi ik rm kr mn ni

ik kn ni ik kn ni ik kp pn nq qi ik pm kp nq qi

B D B L F F F F F F F F

D B B L F F F F F F F F

   

   

     

     

  

  

 

 
 (3.28) 
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These formulations could not be simplified anymore, because unlike GL strain which 

contains the deformation gradient, F , in the derivations, there is no F  in the Eulerian 

form of the energy increments. Therefore, Kirchhoff stress and the Euler-Almansi strain 

are not work conjugate 

 
1

tr( ) tr( )TE TD w
J

    (3.29) 

It is evident that work-conjugacy is simpler for the reference or Lagrangian stress and 

strain than for their counterparts in the current or Eulerian configuration. 

3.2.3 Work Conjugate Stresses and Strains 

As mentioned in continuum mechanics text books (Bower, 2009; Dill, 2007), 

Cauchy stress is the best actual measure for describing the internal forces (force per unit 

area) acting inside a deformed object. The other stress measures are work-conjugate (or 

energy-conjugate) to other specific strains or rate of deformation measures. It means that 

the multiplication of stress by the time derivative of the related strain (or rate of 

deformation) measure, gives the rate of work-done by the forces (Dvorkin, 2010). The 

rate of work done by stresses acting on a small material element with volume in the 

undeformed solid (and volume in the deformed solid) can be expressed and computed as 

(Bower, 2009) 

 d d d dij ij ij ij o ij ij o ij ij oW D v D v F P v E S v        (3.30) 

where D  is the stretch rate tensor, F  is the deformation gradient change rate, and E  is 

the GL strain change rate tensor. Also dv  and d ov  are the infinitesimal volume element 

in the current and reference configurations, respectively. Here, it is noteworthy to 
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mention that Cauchy stress,  , and also Kirchhoff stress,  , are not conjugate to any 

appropriate strain measure. That is the reason why the nominal and material stresses 

should be defined. The first Piola-Kirchhoff stress (nominal stress) is conjugate to the 

rate of deformation gradient, and the II-PK stress (material stress) is conjugate to the 

Lagrange strain tensor. All of the equalities in Eq. (3.30) can be easily derived based on 

Eqs. (3.1) and (3.2). 

3.3 Standard Forms of Small and Large Deformation Constitutive Relations 

Here, it is required to recall the general computational form of mathematical 

relation of small deformation elastic-plastic models that are desired to be extended to the 

finite deformation one. As is widely known, the small strain models have been 

constructed on the essence of incremental analysis of a solid domain. In the following, 

the general form of governing equations for computing the small deformation behavior 

are concisely listed 

 e p
t t t t t t       (3.31) 

 p p p
t t t t t      (3.32) 

 p
t t

t t

f 








  (3.33) 

where  , e , and p  are total strain, elastic strain, and plastic strain, respectively; p  is 

the rate of plastic strain,   is the plastic multiplier, and for the case of viscoplasticity 

this scalar is also a function of viscosity, f  is a favorite yield surface function,   is the 

Cauchy stress, and 
f




  is the direction of expansion of the yield surface. Since non-
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linear numerical models are solved iteratively, the quantity of stress field should be 

updated by a linearization technique. Therefore in Eq. (3.34), the stress tensor will be 

updated through a defined function, and K is an appropriate consistent tangent stiffness. 

 
ˆ

ˆ( ) ,t t t t t t
t t

K   
  




 


 (3.34) 

Now, one standard form for finite deformation elastoplastic model should be selected. 

The basics and historical details of the theory of finite deformation can be studied in 

Moran et al. (1990). The following general incremental equations are presented 

 e p
t t t t t tF F F    (3.35) 

   1p p p
t t t t t t

t t

fL F F
S




  



 


  (3.36) 

 ˆ( )t t t tS S F   (3.37) 

 
ˆ

t t

t t

SK
E







 (3.38) 

The flow rule contains the magnitude of the plastic flow,  , and the flow direction as 

f




, the same as Eq. (3.33), and S  is the  II-PK tensor. Notice that the discretization 

method for the plastic flowing rule and finding the deformation gradient of plastic 

portion of the deformation is the essential part of the generalization. From Eq. (3.36) the 

p
t tF   may be found in two ways. The first way is built on the previous deformation 

gradient tensor, p
tF , which reduces the equation to a system of linear algebraic 
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equations, but this method gives an approximation and computationally is a time 

consuming task. 

The next approach is exponential solution. If the rigid body rotation lumped to 

the elastic part, finding the solution for p
t tF   is easier, but updating e

t tF   will face some 

problems. However, if the rotation is lumped to the plastic portion, the solution needs 

more mathematical manipulation, which is fully discussed in Section 3.5. It is also 

crucial to recall that since the flow rule in plasticity is defined in the intermediate 

configuration (plastic or unloaded configuration) the frame indifference concept has 

been consistently satisfied (Ortiz and Martin, 1989). 

3.4 Kinematics 

3.4.1 Fundamental Kinematics Formulation 

From continuum mechanics, one may recall the general form for motion of a 

particle is defined as 

 ( , )x x X t  (3.39) 

where X  is the position of a material particle in the initial or reference configuration, 

and x  is the spatial position in the current configuration. The deformation gradient F

describes the motion of the body 

 , det( ) 0
xF F
X


 


 (3.40) 

From continuum mechanics, the particle velocity v  and the velocity gradient L  are 

defined by 

 1,
vv x L FF
x


  


  (3.41) 
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Here, and from now on, ( .) denotes the material time derivative. The deformation 

gradient, F , may be multiplicatively decomposed into orthogonal rigid body rotation, 

and symmetric positive-definite pure stretch deformation tensors, well-known as polar 

decomposition, that is 

 1 T,F RU VR R R    (3.42) 

The symmetric stretch tensors V  and U  are known as left and right stretch tensors. The 

velocity gradient is decomposed to symmetric (or objective) deformation rates D , and 

skew-symmetric spin rate (or vorticity tensor) , as 

    T T1 1
, ,

2 2
L D D L L L L        (3.43) 

3.4.2 Green-Lagrange Strain Partitioning 

Consider one elastoplastic deformed configuration of a material domain as , 

and its initial configuration as o . Also, the deformation gradient F  maps the material 

particle position from the initial or reference configuration to the spatial position in the 

current configuration, Fig. 3.1. As can be seen in this figure the presence of the plastic 

part for the deformation gradient field introduces another configuration  , which is 

called intermediate configuration. 
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Fig. 3.1. Illustration of deformation gradient mapping tensor, and multiplicative 
decomposition into elastic and plastic components. 
Here, the intermediate configuration is introduced, even though it is not physically 

attainable. It is defined and considered as a set of all unloaded configurations. 

In the second type of large deformation formulation, Eq. (2.3), the deformation 

gradient has been multiplicatively decomposed to the elastic and plastic components. By 

considering Eq. (2.3) and Eq. (3.41), one can expand the velocity gradient in terms of 

viscoelastic and viscoplastic deformation tensors, as 

        

 
      

.
1ve vp ve vp

1 1 1 1 1ve vp ve vp vp ve ve ve ve vp vp ve

( )L F F F F

F F F F F F F F F F F F



    



      
 (3.44) 

The velocity gradient of viscoelasticity is defined as 
1ve ve veL F F 

  , and velocity 

gradient of viscoplasticity, 
1vp ve vp veL F L F 

 
 where 

1vp vp vpL F F 
  , one can obtain the 

decoupled velocity gradient as 

 ve vpL L L   (3.45) 

Small deformation models have been usually written based on additively decomposing 

elastic and plastic strains or strain rates. Such decomposing is also possible for the large 

deformation concept, for both Eulerian and Lagrangian strains. From now on, GL strain 
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quantity that shows how much right Green-Cauchy deformation tensor, TC F F , 

differs from the unity tensor, I , is considered. At this time, in order to discretize the GL 

strain to its viscoelastic and viscoplastic parts, the definition of GL strain needs to be 

recalled, for the total elastic and plastic strain portions. 

    T1 1

2 2
E C I F F I     (3.46) 

  Tve ve ve1

2
E F F I   (3.47) 

  Tvp vp vp1

2
E F F I   (3.48) 

From Eq. (2.3), the right Cauchy-Green deformation tensor can be written as 

      T T TT ve vp ve vp vp ve ve vpC F F F F F F F F F F    (3.49) 

Since ve vpE E E  ; thus, in order to additively decompose GL strain to viscoelastic 

strain, veE , and viscoplastic strain, vpE , the difference of total GL strain and the elastic 

and plastic portions should be found. Hence, substituting Eqs. (3.46), (3.47) and Eq. 

(2.3) into vpE E , and after some straightforward manipulations, one can get 

    T T Tvp vp vp ve vp vp ve vp1

2
E E F F F I F F E F     (3.50) 

which finally leads to the viscoelastic and viscoplastic partitioning in the next expression 

  Tvp ve vp vpE F E F E   (3.51) 

Eq. (3.51) shows the total Green-Lagrange strain can be additively decomposed to 

viscoelastic and viscoplastic components, in such a way that the elastic portion should be 



62 
 

mapped to the plastic configuration. Moreover, since plastic and/or viscoplastic models 

have been usually written based on strain rates, the time derivative of Lagrangian strain 

is required. Thus, by applying material time derivation on Eq. (3.51), one can get 

      T T Tvp ve vp vp ve vp vp ve vp vpE F E F F E F F E F E         (3.52) 

And by factorizing the deformation gradient and its transpose from the viscoelastic 

terms, one may come up with the following expression for the total strain rate 

    T T1 1vp vp vp ve ve ve vp vp vp vpE F F F E E E F F F E       
      (3.53) 

Finally, the time derivative of GL strain can be decoupled into the viscoelastic and 

viscoplastic components as the following simplified form 

  T 1vp ve ve vp vp vp vp2symmE F E E F F F E     
     (3.54) 

In Eq. (3.54), the viscoplastic strain rate is independent of elastic part. On the other 

hand, the viscoelastic strain rate is dependent to the rate of viscoelastic strain in the 

current time increment, veE , and to the total amount of viscoelastic, veE , viscoplastic 

deformation gradient, vpF . Similar to Eq. (3.51) the total viscoelastic strain rate should 

be transformed from its own configuration (intermediate) to the viscoplastic 

configuration (or final configuration). The recent equation for the GL strain rate can also 

be rewritten in the following form
 

 
T 1vp ve T vp vp vp ve,E F E E F F F    

      (3.55) 
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Both Eq. (3.54) and (3.55) are applicable, and their usage depends on how the other 

formulations are derived. Furthermore, based on Eq. (3.46), the general form of the 

material time derivative of GL strain tensor has the next expression
 

 
1

2
T TE F F F F   

    (3.56) 

By factorizing the deformation gradient from the right and its transpose from the left 

side, Eq. (3.56) will be explained as 

    TT -1 -11

2
E F FF FF F    
    (3.57) 

Recalling the rate of deformation tensor from Eq. (3.43); hence, the general form for GL 

strain time derivative is 

 TE F DF  (3.58) 

3.4.3 Equivalency of Current and Conventional Methods 

Since in the first type of finite deformation models, the additively decomposition 

of velocity gradient, L , or its symmetric part, D , is used; therefore, it needs to be 

proved that Eq. (3.45) and the derivations which leads to Eq. (3.54) are equivalent. 

Hence, for this purpose, by substituting Eq. (3.58) into viscoplastic part of Eq. (3.54), 

and recalling 1L FF   , one can rewrite Eq. (3.54) as 

 
TT Tvp ve ve vp vp ve vp vp vp vpE F E E L L E F F D F     

     (3.59) 

After some mathematical manipulation, the strain rate will be written as 

 
TTvp ve ve vp vp ve vp1 1

2 2
E F E E I L L E I F                
     (3.60) 
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Now, multiplying both sides of Eq. (3.60), from right side by 1F 
 and from left side by 

TF  , one can come up with 

 
TTT 1 T vp ve ve vp vp ve vp 11 1

2 2
F EF F F E E I L L E I F F                   

     (3.61) 

From Eq. (3.47), 
Tve ve ve1 1

2 2
E I F F   is achieved, and the inverse form of Eq. (3.58) 

can be expressed as T 1D F EF   . Therefore, by replacing these achievements and also 

Eq. (2.3) into Eq. (3.61), it can be modified as 

   T 1T T T TT 1 ve vp vp ve ve ve vp vp ve ve vp ve vp1 1

2 2
F EF F F F E F F L L F F F F F

        
 

 (3.62) 

And after some mathematical simplification, the total stretching rate tensor will be 

expressed as 

    T1 1ve ve vp ve ve vp ve1

2
D D F L F F L F      

   (3.63) 

Recalling:  T1

2
D L L  , Eq. (3.63) can be revised as 

        TT 1 1T ve ve ve vp ve ve vp ve1 1 1

2 2 2
L L L L F L F F L F        

   (3.64) 

The recent relation can be cut down to the following equation 

    
T

1 1T ve ve vp ve ve ve vp veL L L F L F L F L F              
   (3.65) 

Removing the transpose terms, leads to the decoupling of the velocity gradient to 

viscoelastic and viscoplastic terms 
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1ve ve vp veL L F L F 

    (3.66) 

The derivations from Eq. (3.59) to Eq. (3.66) generally confirms that Eq. (2.3) which is 

usually employed in the second type of finite deformation models is exactly equivalent 

to Eq. (3.54) which is derived based on additively decomposing the elastic and plastic 

(or viscoelastic and viscoplastic) portions of the total GL strain. Indeed, Eq. (3.54) 

admits a multiplicative decomposition of elastic and plastic parts of total deformation, 

and can be utilized for generalizing infinite deformation models to large deformation 

range. 

3.5 Computations of Green-Lagrange Strain and Strain Rates 

3.5.1 Rigid Body Rotation 

The concept of polar decomposition in Section 3.1 for the deformation gradient 

for both elastic and plastic projections, with respect to Eq. (2.3), gives two stretches and 

two rotations for either elastic or plastic portions. Therefore, when identifying the 

response of each elastic or plastic deformation, two different components should be 

investigated: stretch and rotation. Hence, the solution for decomposing the whole 

deformation will totally face to four tensor ingredients. 

Decomposing and finding viscoelastic and viscoplastic rotations separately need 

more considerations. It is worthy to mention that decoupling elastic and plastic rotations 

leads to an indeterminate problem. Therefore, it is assumed that the elastic deformations 

are not affected by plastic flow, which means that the elastic deformation is independent 

of the history of plastic deformation. This assumption is also physically argumentative, 
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Based on continuum mechanics for polar decomposition, the total rotation (that 

contains both elastic and plastic rotations) can be calculated independent of elastic and 

plastic deformations, through the following procedure. At first, Left Cauchy-Green 

deformation tensor ( TB FF ), should be obtained 

   TT T 2 TB FF VR VR VRR V V V FF       (3.68) 

After calculating the total left stretch tensor, V, the total rotation can be computed as 

 
11 2R V F B F   (3.69) 

Eq. (3.69) can be straightforwardly computed using the spectral decomposition method 

for tensor B . The spectral decomposition of the second-order tensor B  is 

 TB v v  (3.70) 

in which v  is a matrix containing the eigenvectors, and   is a diagonal matrix 

containing the eigenvalues, with respect to the arrangement of eigenvectors in v . 

Hereafter, the square root of tensor B  will be computed as 

    

1 2
1

11 1T T 1 2 T22 2
2

1 2
3

0 0

0 0

0 0

B v v v v v v


  




  



 
     
  

 (3.71) 

The rotation tensor is exactly and directly calculated based on the polar decomposition 

concept. Thus, there is no need to compute the increments of rotations through the 

numerical integration of the rate equations in each analysis time interval. In this work, 

the total rigid body rotation has been assumed to be constant throughout an increment 

and its value is equal to the final rotation in that increment, t tR  . 
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3.5.2 Computing Incremental Strain 

Here, the required equations for calculating the increment of GL strain at the 

current analysis time ( t t ) based on the deformation gradient quantities at the 

previous and the current time increments, is explained. In small deformation problems, 

additively upgrading the stresses and strains components is satisfactory, since in small 

strain case there is not any non-linear term in the strain measure; so, the linear terms can 

be added or deducted. Furthermore, because the original configuration and all the other 

incremental configurations are considered as the same; therefore, the additive updating 

for the stress components is also acceptable. Conversely, in Lagrangian and Eulerian 

strain tensors, because of the presence of non-linear terms in the definition of these strain 

measures (the multiplicative terms in the next relations) additive updating is impossible. 

 

1 1
(Lagrangian)

2 2

1 1
(Eulerian)

2 2

JI K K
IJ

J I I J

ji k k
ij

j i i j

UU U UE
X X X X

UU U Ue
x x x x

     
           

     
              

 (3.72) 

Additive updating can be acceptable if and only if the time increment of analysis is very 

small, where in the multiplication of deformation terms will be practically zero. 

However, in mathematical form 

 (Lagrangian) , (Eulerian)t t t t t t t t t tE E E e e e        (3.73) 

Henceforth, one can track the following technique for computing and/or updating the GL 

strain at the current time increment. From Eq. (3.46) and Eq. (3.56) the total Lagrangian 

strain and its time derivative are available as  T1

2t t t t t tE F F I   
 

and 
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T T1

2t t t t t t t t t tE F F F F       
   , respectively. Moreover, because the deformation 

gradient is a mapping tensor, the following sequential multiplicative form for updating 

the deformation gradient emerges from its definition 

    11
t t t t t t t t t tF F F F F F

t


      


  (3.74) 

Thus, if increment is used rather than rate, the term TF F  in this expression can be 

rewritten as 

        T T TT 1 1
t t t t t t t t t t t tF F F F F F C

t t
 

     
 

  (3.75) 

Considering the transpose of the recent equation, and  TT TF F F F  ; hence, one can 

simply revise the GL strain rate to achieve the increment of Lagrangian strain, as 

    T 11

2t t t t t t t tE F C C F 
  

      (3.76) 

Therefore, one should find the current right Cauchy-Green tensor, T
t t t t t tC F F   , and 

the inverse of the deformation gradient tensor in the previous time increment to be able 

to determine the amount of the increment of GL strain from time t   to t t . 

The other technique for computing the Lagrangian incremental strain is discussed 

as next. In this approach, the incremental strain will be found out through the equation of 

the strains in the current and previous increment and the definition of incremental strain, 

all according to the deformation gradient and the increment of deformation gradient, as 

     T T T1 1 1
, ,

2 2 2t t t t t t t t t t t t t t tE F F I E F F I E F F I               (3.77) 
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Therefore, one can expand the difference of the current and previous GL strain as 

    T T T T T1 1

2 2t t t t t t t t t t t t t t t t tE E F F F F F F F F F F            (3.78) 

The recent equation finally delivers the next equality for computing the incremental GL 

strain (which is utilized in this dissertation) 

  T 1
t t t t t t tE F E E F 
     (3.79) 

This equation means that the incremental GL strain is the defference of the current and 

previous strain which is transformed backward to the previous converged state. Thus, 

when tF  and t tF   are given by FEM software or computed through constitutive 

equations like ve vp
t t t t t tF F F   , the incremental strain can be found through Eqs. (3.76), 

(3.77), or (3.79). 

3.5.3 Plastic Strain Rate 

In this section a relationship for the viscoplastic strain rate, vpE  is carried out. In 

small deformation the rate of expansion of the yield surface is written as mentioned in 

Eq. (3.33). But in finite deformation, the rate of deformation is co-directional with the 

outward normal to the local smooth yield surface (Hill and Rice, 1973; Lubarda and 

Benson, 2001), and generally has the following form (similar to Eq. (3.36) 

  
     TT 1 1vp vp vp vp vp vp vp vp vp1 1

,
2 2

gD D L L F F F F
S

           
    (3.80) 

After finding the rate of stretching tensor, vpD , calculating the viscoplastic deformation 

gradient, vpF , is required, that the next numerical technique should be followed. Here, it 
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is recalled that: vp vp vpF V R RU  ; thus, the general form of the velocity gradient 

based on its stretch and rotation components is 

 
.

1 1 1 1( )( ) ( )( )L FF RU RU RU RU U R          (3.81) 

The velocity gradient and its transpose are simplified and written in the succeeding form 

    T 1 T T T 1 T,L RR R UU R L RR R U U R         (3.82) 

Therefore, by substituting Eq. (3.82) into Eq. (3.80), the mathematical relation for the 

rate of deformation tensor may be furnished as 

    Tvp T T 1 1 T2D RR RR R UU U U R       
     (3.83) 

Since R  is an orthotropic tensor; thus, TRR  is a skew-symmetric tensor; therefore, the 

summation in the first bracket will vanish, because 

 
.

T T T T( ) 0 0RR I RR RR RR        (3.84) 

Henceforth, Eq. (3.80) is reduced to 

  vp 1 1 T2D R UU U U R     (3.85) 

In Eq. (3.83), vpD  and the total rotation are known. Thus, in order to calculate the right 

Cauchy-Green stretch tensor, vpU , a suitable relation for explaining the rate of stretch 

which depends on the previous and current stretch quantities, has to be found. There 

exist two ways to solve this equation; one is based on exact integration, and the other 

one is based on numerical iterative method. For the first solution attempt, it is assumed 

that in each analysis time increment the multiplication of the incremental stretch and the 

inverse of stretch (also called pullback stretch) can commute with each other, i.e. 
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 1 1UU U U     (3.86) 

Because a chosen constitutive law is being solved in the essence of discretized 

incremental approach, the U  which maps the previous configuration to the current 

configuration (just in stretching point of view and not rotation), the U  is almost very 

close to the identity tensor. Based on this assumption, and by replacing Eq. (3.86)  into 

Eq. (3.85) and multiplying both sides to the time increment, the next relation can be 

achieved 

    
vp

T vp
vp

d
2 2 dt t t t t t

UR R D t
U  

 
 

 
 (3.87) 

Multiplying both sides of Eq. (3.87) to the current rotation and its transpose, the required 

equation for computing the viscoplastic stretch is obtained 

     
vp

T vp
vp

d
dt t t t t t

U R D t R
U     (3.88) 

At this point, the total current rotation, t tR  , which was calculated by Eq. (3.69) is 

known, and also vpD  has been computed through the chosen plastic constitutive model 

in Eq. (3.80). Therefore, the quantity of the right hand side of the recent equation is 

known. Subsequently, in order to calculate the viscoplastic stretch, vpU , one can solve 

the above tensorial differential equation through the following procedure. For simplicity, 

in the rest of this section, the RHS of Eq. (3.88) is represented by dt , which means 

    T vpd dt t t t t tt R D R t  
     (3.89) 

Integrating both sides of Eq. (3.89), leads to 
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   
vp

vp
vp vp

vp
0 0 0

d
d Ln Ln d Ln( ) d

t tU t t t t t t

t t t t
I

U t U I t U t
U

   

           
 

 vp

0

exp d
t t

t tU t




 
   

 
   (3.90) 

By utilizing the recent equation, and splitting up the integral inside the exponential 

operator, the total stretch tensor, vpU , in the current time increment can be numerically 

decoupled as 

 vp

0 0

exp d d exp d exp d
t t t t t t

t t
t t

U t t t t
 



     
             

     
        (3.91) 

which gives the successive multiplicative updating form as 

 vp vp vp
t t t t tU U U    (3.92) 

To calculate and update the new viscoplastic stretch tensor, sequential multiplicative 

method ought to be used 

 vp vp vp vp vp vp vpor ...t t t t t t t t t t tU U U U U U U           (3.93) 

Therefore, the current viscoplastic stretch tensor is 

 vp vpexp( )t t tU t U    (3.94) 

Here, the exponent of a second-order tensor must be found out. For this issue, the 

exponent of a tensor can be computed through the spectral decomposition of a matrix the 

same as in Eq. (3.70) and (3.71). Thus, the exponent of tensor t  will be computed as 

 
1

T T T
2

3

exp( ) 0 0

exp( ) exp( ) exp( ) 0 exp( ) 0

0 0 exp( )

t v v v v v v


  


 
      
  

  (3.95) 
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On the other hand, the second solution technique for computing the viscoplastic 

stretch tensor is described here. If the U  and 1U 
 cannot commute, then both sides of 

Eq. (3.85) can be multiplied by the time increment as 

  1 1vp vp vp vp vp T2 t D R U U U U R 
      (3.96) 

Multiplying both sides of Eq. (3.96) by rotation tensors, modifies it as 

    1 1 Tvp vp vp vp vp, 2 t t t t t tU U U U t R D R 

          (3.97) 

The recent equation can be solved iteratively, because the RHS is computed and known, 

and by introducing an initial plastic stretch tensor for vpU , the vpU  can be calculated 

through a linear system of equation as 

 
1 1vp vp vp vp

,k ,k ,k ,kt t t tU U U U 
     (3.98) 

where k  is the number of iterations. In the first increment of plasticity, the ,tU vp
k  

is the 

identity tensor, and a proper initial value for the plastic stretch tensor in other increments 

can be the value of converged stretch tensor in the previous analysis time, i.e.

vp vp
, 0t t tU U  . The linear algebraic equation for solving Eq. (3.98) is explained in 

Appendix A. Afterwards, the plastic stretch tensor can be upgraded through one of the 

following updating procedure 

 U U U vp vp vp
k+1 k+1 k  (3.99) 

In several papers (Bardenhagen and Kober, 2004; Simo et al., 1985; Voyiadjis et 

al., 2006), for updating the deformation gradient or stretch tensors, additive correction 

has been employed (i.e. F F F  vp vp vp
k+1 k+1 k  or vp vp vp

k+1 k+1 kU U U   ). Additive correction 
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just relates to the incremental motion concept as: x X u X   , and is mistakenly used 

for updating these tensors. In order to upgrade the mapping tensors such as: F , R , and 

U  the sequential multiplicative updating scheme should be used. Nevertheless, additive 

correction for the mapping tensors is mathematically admissible (since it is the first order 

approximation of the expansion series) only when the amount of time increment is very 

small, but small time increment makes the simulations very time costly. 

It is obvious that from the algebraic equation system, Eq. (3.98), ,
vp

ktU  can be 

found and after updating the stretch tensor through Eq. (3.99), for the next iteration, 

,
vp

ktU  must be inversed. Once the viscoplastic stretch tensor is calculated, the 

viscoplastic deformation gradient can be easily found by polar decomposition formula:

vp vpF RU . Subsequently, utilizing Eq. (3.58) delivers the viscoplastic strain rate. 

3.5.4 Elastic Strain Rate 

In order to use Eq. (3.54) for finding the total strain rate, one needs to find the 

viscoelastic strain rate, veE , as well. By using Eq. (3.47), and recalling that the elastic 

rotation has been lumped to the plastic part; the viscoelastic strain rate can be derived in 

the following form 

   T 2ve ve ve ve ve ve ve ve ve1 1
and , =

2 2
E F F I U I F R U U R I       (3.100) 

Thus, the total viscoelastic stretch is driven by 

 ve ve2t t t tU I E    (3.101) 
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Now, the material time derivation can be simply applied to the total elastic strain in Eq. 

(3.100), which delivers 

    ve ve ve ve ve1

2

T
E U U U U    
    (3.102) 

Thus, veU  should be found by utilizing the successive multiplication updating method, 

which provides the rate of mapping tensor (here rate of stretch) through projecting 

backward by the previous tensor and then projecting forward by the current tensor 

 11
t t t t tU U U

t


 


  (3.103) 

From Eq. (3.102) and (3.103), it may be concluded that 

    ve 2 1 2 1 2 11 1
symm

2

T

t t t t t t t t tE U U U U U U
t t

  
  

          
  (3.104) 

Since veE , veE , vpE , vpF , and vpF  have been found; the rate of total GL strains can 

be calculated based on Eq. (3.54). 

3.5.5 Upgrading Lagrangian Strain 

As mentioned in Section 3.5, the Lagrangian or Eulerian strains cannot be 

updated by additive corrections. Here, the required equations for updating the GL strain 

at the current time, t t , based on the increment of the GL strain at the current time, 

and the deformation gradient at the previous time, t , is described. Recalling Eq. (3.76), 

since t tE   has been calculated by a selected constitutive model, and also the 

deformation gradient in the previous time increment is known (previous converged 

configuration); therefore, Eq. (3.76) is reduced to a system of linear equations and can be 

solved for computing t tC  . The right Cauchy-Green deformation tensor is symmetric 
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and has six independent components, thus a sparse algebraic equation system is 

preferred to solve it. In the following the solution for the sparse system is presented. For 

computing t tC  , the off diagonal components 12C , 13C , and 23C  can be calculated at 

first by using Eq. (3.105) and Eq. (3.106): 

 

 
11 12 13 12 11 22 21 12 22 11 21 11 22

21 22 23 13 11 33 31 13 33 11 31 11 33

31 32 33 23 22 33 32 23 33 22 32 22 33

2

2

2

A A A C f f E f f E f f E
A A A C f f E f f E f f E
A A A C f f E f f E f f E

         
               
              

 (3.105) 

11 11 22 11 22 12 21 12 22 11 32 31 12 13 11 31 22 32 21

21 33 11 23 21 13 22 11 33 11 33 13 31 23 11 21 33 23 31

31 33 13 22 12 23 32 22 12 33 13 32 33 22 33

( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) (

A f f f f f f A f f f f f A f f f f f
A f f f f f A f f f f f f A f f f f f
A f f f f f A f f f f f A f f

      

      

      22 33 32 23)( )f f f f
 (3.106) 

where
 
for the sake of simplicity ijf  are the components of the second order tensor 1

tF  . 

Secondly, the three diagonal components of the right Cauchy-Green deformation tensor 

can be found as 

 

 
 
 

11 11 12 21 13 31 11

22 22 12 12 23 32 22

33 33 13 13 23 23 33

C E C f C f f

C E C f C f f

C E C f C f f

   

   

   

 (3.107) 

After computing t tC  , through Eq. (3.46) the GL strain can be easily calculated. This 

method can be used when the time increment is very small. Otherwise the second 

method should be used. 

The second technique for computing GL strain at the current time ( t t ), is 

explained here. Integrating both sides of Eq. (3.76) (in the rate form) leads to find the 

increment of strain for a typical time, t , as 
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 T T2 d d
t t t t

t t t t t
t t

E t F F F F t
 

      (3.108) 

In order to compute the integration over the rate of deformation, tF , iterative scheme 

should be hired, since the integration cannot be applied to only the rate of tensors 

   
T T T T2 d d d or 2

t t t t t t

t t t t t
t t t

E F F F F E F F F F      
  

            (3.109) 

In large deformation concept, contrary to small deformation, converting a rate to its 

identical increment is not achievable by multiplying the time increment to the rate. 

Actually, the rate must be integrated over the chosen time span to provide the increment 

of the desired quantity. Thus, to compute the deformation gradient increment, the 

integration should be discretized as 

 (k)
k

k 1

d
t t N

t t t t t t
t

F F t F t


  


       (3.110) 

where the subscript k is the iterations for updating t tF . Butr, Eq. (3.110) can be used 

just when the time increment is very small. Fig. 3.3 graphically illustrates this iterative 

method for updating the deformation gradient based on its rate. The solid lines have 

physical meanings that are the converged updated configurations, whereas the dotted 

ones represent the non-equilibrated configurations, which only have numerical existence. 
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Fig. 3.3. Graphical depiction for iteratively updating deformation gradient tensor. 
 

Therefore, the following discretization for computing the integral form is considered: 

 
TT (k) (k)

k
k 1

d
t t N

t t t t t t
t

F F t F F t


 


     (3.111) 

where  ( )N t t t t    k  is the number of time span divisions between t  and t t . 

Also, t t tF F (0)

 and t t t tF F (N) ; thus, Eq. (3.108) may be written in discretized form 

 2 t t t t t t t t t tE F F t F F t         
T T

N N
(k) (k) (k) (k)

k k
k=1 k=1

   (3.112) 

The rate of deformation gradient in each time span is defined as 

 
1 1

t t t t t t t tF F F F
t t     

 
-1(k) (k) (k) (k-1)

k k

  (3.113) 

For simplifying Eq. (3.112), one can modify the second term of this equation by 

considering the result of Eq. (3.113) as 

 
-1 -1

t t t t t t t t t t t t t t t t t tF F t F F F F F C F            
T T T(k) (k) (k) (k) (k) (k) (k-1) (k) (k-1)

k
  (3.114) 

Moreover, since the two summation terms in Eq. (3.112) are the transpose of each other, 

this equation can be rewritten as 

 N NT 1 T(k-1) (k) (k) (k-1) (k-1) (k)

k=1 k=1

2 or symmt t t t t t t t t t t t t t t tE F C C F E F C
  

            
 (3.115) 

The required steps for iteratively computing t tC   and updating the GL strain is 

demonstrated as a flow chart in Fig. 3.4. 
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Fig. 3.4. Iterative procedure for updating GL strain, based on the quantity of GL strain 
increment and the previous deformation gradient. 

The third approach for computing the GL strain at the current time is also 

elaborated here. Dissimilar to Eqs. (3.112) to (3.115), here the components of the rate of 

deformation gradient are not substituted in the formula. Hence, by following the same 

iterative procedure for calculating the deformation gradient in Eq. (3.115), one can get 

  2
T

N
T (k) (k)

k=1
t t t t t t t t t tE F F F F          (3.116) 

where the superscript k  is the number of iterations. Similar to Eq. (3.76), Eq. (3.116) 

will be reduced to a linear system of equations and can be solved for t tF . To solve 

the recent algebraic equation, the same procedure as explained in Eqs. (3.105) to (3.107) 

can be utilized by just switching the two variables; tensor C  should be interchanged by 

F and also (k)
t tF   by f . The initial value for t tF  is the deformation gradient tensor in 
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the last converged increment: (0)
t t tF F  . Now, after computing t tF based on t tE  

and (k)
t tF  , for the next iteration the deformation gradient, (k+1)

t tF  , needs to be updated as 

 t t t t t tF F F   (k+1) (k)  (3.117) 

Once more, similar to Eq. (3.99), both additive and multiplicative upgrading for tensor 

F  is possible, and the additive one is acceptable just when the time increment is very 

small. By repeating the iterations the deformation gradient tensor will be upgraded, and 

eventually the total Lagrangian strain can be found by Eq. (3.46). 

The third method looks to be capable to find and update the deformation gradient 

if this tensor, F , is symmetric. In other words, it should be just pure stretch, because the

t tF  tensor has nine independent components and t tE  is symmetric and gives six 

independent linear equations. But, this system of equation gives a symmetric t tF  in 

all iterations, and then the deformation gradient will be updated through 

  t t t t t t t t t t t tF F F F F F F    

 
       
 


N
(k) (N) (N-1) (1)

k =1

 (3.118) 

Even though each (k)
t tF   is symmetric, the multiplications of these symmetric tensors, in 

general, are non-symmetric. Moreover, if the outcome of these multiplications is 

symmetric the multiplication by tF  may be again symmetric or non-symmetric. The 

symmetry concept of tF  comes from the geometrical change of deformation. 

However, the forth and easiest technique is similar to Eq. (3.79) (which is for 

computing incremental GL strain). According to Eq. (3.79) the GL strain at the current 

time is found by transforming the current incremental strain to the previous converged 
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state and then is added to the previous strain tensor. It means strains should in the same 

deformation state, in order to be summable. 

          T 1 T
t t t t t t t t t t t t t tE F E E F E F E F E 
                     (3.119) 

3.5.6 Decomposing Finite Volumetric and Deviatoric Strains 

In order to generalize a small strain constitutive model to a large deformation 

one, there exist some other concerns that should be taken into account. In many small 

strain constitutive relations, the strains and stresses are conventionally separated to 

volumetric and deviatoric quantities. In finite deformation context, the volumetric and 

deviatoric separation of strains and stresses are also required, but they do not obey the 

same relation in small strain. Actually in finite strain concept, the volumetric measure is 

a tensor and not scalar, and volumetric and deviatoric tensors should be multiplicatively 

decomposed. Converting and utilizing multiplicative form for volumetric and deviatoric 

strains make some difficulties in mathematical formulations. Thus, it is more convenient 

to preserve the additive form even for generalizing small to large deformation models. 

From continuum mechanics (Flory, 1961; Lubliner, 1986; Sidoroff, 1974; Simo 

and Ortiz, 1985), and according to the Hu-Washizu variational principal, the stretch 

tensor in polar decomposition can be multiplicatively split-up to deviatoric stretch, DU , 

(volume preserving), and volumetric stretches, VU  (dilatational). These components are 

explained in Eq. (3.120) and schematically illustrated in Fig. 3.5. Here, the deviatoric 

deformation is also called isochoric, which means deformation at constant volume. 

 D VF RU RU U   (3.120) 
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Fig. 3.5. Illustration the components of total deformation gradient projection: volumetric 
expansion, deviatoric deformation, and rigid body rotation on a rectangular sample. 
 

Here, the same as Eq. (3.42), R  is the total rigid body rotation. Based on the recent 

equation, the right Green-Cauchy tensor will have the following form 

      TT T 2
D V D V V D D V V D VF F RU U R U U U U R R U U U U U    (3.121) 

Thus, Eq. (3.46) can be used to find the volumetric and deviatoric parts of GL strain, as 

    2 2
V V D D

1 1
,

2 2
E U I E U I     (3.122) 

Now, in order to find the relation between volumetric and deviatoric quantities of 

Lagrangian strain, the same procedure from Eqs. (3.50) to (3.55) can be used: 

    2 2
V V D V V

1 1

2 2
E E U U U I U I      (3.123) 

Utilizing Eq. (3.122) and (3.123), one can obtain the following decomposition for 

volumetric and deviatoric Lagrangian strains 

  V D V VE U E U E   (3.124) 

Based on the current derivations, some other useful equations are presented that are 

proper to be hired in incremental techniques for computing the GL strain from its 
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volumetric and deviatoric components. For this case, the time derivation of the total 

Lagrangian strain in Eq. (3.124) in comparison to Eq. (3.51), leads to an equivalent 

relation similar to Eq. (3.54) and (3.55). Hence, the same route as mentioned in Eqs. 

(3.51) to (3.55) is followed to find the decomposition of the incremental GL strain based 

on the increment of volumetric and deviatoric parts; and can be formulated as 

  1
D V V D D D D2symmE U E E U U U E          (3.125) 

Or in the other form, it may be expressed as
 

    T1 1
D V D V D D V DE U E U U E U U U        

 (3.126) 

Moreover, if volumetric stretch has a spherical form like: VU v I , where the variable 

v  is the value of volumetric change; then, one can simplify Eq. (3.126) as following 

     2
D V D DE U E U E v      (3.127) 

These equations are correct just when the time increment is small enough for converting 

rate to increment. While generalizing a small-strain model to finite deformation, the 

above decoupling approach in Eqs. (3.125) and (3.126) can be employed, but they are 

computationally very expensive; therefore, it is recommended to avoid using them 

through generalization (if possible). However, pure additive decomposition is also 

possible, provided that the volumetric strain is small enough not to affect the pure 

distortional deformation (Bažant, 1996). Additively partitioning the strain can greatly 

simplify the finite-strain generalization for a selected small-strain model. GL strain is a 

special case of a general formula set for Lagrangian strain tensors (Fu and Ogden, 2001; 

Hill, 1968): 
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  ( ) (2 )1

2
m mE U I

m
   (3.128) 

which is also a subset of a more general case of finite strain measure, called Doyle-

Ericksen tensors (Bažant and Cedolin, 2010; Doyle and Ericksen, 1956): 

 ( ) 1 ( )when 0 : , when 0 : Ln( )m m mm m U I m U       (3.129) 

To split-up the volumetric and deviatoric strains, Eq. (3.120) should be substituted into 

the right Cauchy-Green deformation tensor, TC F F . Thus, tensor C  is written as 

   
2T T T T 2 33

V D D V D V,F F U U R R U U J U U J I    (3.130) 

Henceforth, the general formula of Lagrangian strain tensor can be modified as 

  2 2( ) 1 2 13 3
D D

m
mm mm J U I m J U I             

 (3.131) 

This equation can be simply factorized, and the finite strain tensor is additively 

decomposed to volumetric and deviatoric (isochoric) tensors, as 

   ( ) ( ) ( ) ( ) 1 ( ) 13 3
V D V D D, 1 ,

m mm m m m m mm J I m J U I            (3.132) 

The ( )
D

m  is more appropriate to be called isochoric, since its trace is not equal to zero. It 

is noteworthy to mention that additive decomposition in Eq. (3.132) (the third relation) is 

still affected by volumetric changes, since it depends on the value of J . Additive 

partitioning of large strain is proper and applicable; however, it is limited to moderately 

large strains (up to about 10%) (Bažant et al., 2000). 

Up to this point, the decomposition of volumetric and deviatoric GL strain has 

been discussed. However, during implementation, one should be able to systematically 
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compute the volumetric and deviatoric incremental strains in each time span. In this case 

Eqs. (3.77) or (3.79) should be followed, and the key point is at first computing the 

volumetric incremental strain. Hence, based on Eq. (3.79), it can be found as
 

  T 1vol vol vol vol vol
t t t t t t tE F E E F 

     (3.133) 

Also, based on Eq. (3.130), the GL volumetric strain is 

  1 2 2vol vol vol vol3 3 31
, 1

2t t t t t t tF U J I C J I E J I       (3.134) 

In this case, it is assumed that the volumetric deformation does not contain the rigid 

body rotation ( vol volF U ). Now, substituting the recent equation into Eq. (3.133) 

provides the increment of volumetric GL strain, as 

     T 1 22 2vol vol vol 1 33 31 1
1

2 2t t t t t t t t t tE J J F F J J I



  

      
 

 (3.135) 

Then, the deviatoric portion of the incremental strain can be found through its exact 

definition as 

  T 1dev dev dev dev dev
t t t t t t tE F E E F 

     (3.136) 

The distortional part of the deformation gradient is 
1dev volF F F 

 ; thus, according to 

Eq. (3.136) and the increment of deformation gradient ( 1
t t t t tF F F 
   ), one can get 

  2dev T31

2t t t t t t t tE J F F I


   
        

 (3.137) 

After rephrasing the terms in this equation, the incremental deviatoric strain will be 

achieved as 

 
2dev vol3

t t t t t t t tE J E E


           (3.138) 
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The next flowchart (Fig. 3.6) explains the procedure for calculating the incremental 

volumetric and deviatoric strains. 

 

 

Fig. 3.6. Sequences for computing the incremental portions of volumetric and deviatoric 
GL strain based on the quantity of previous and current deformation gradient tensors. 

3.6 Second Piola-Kirchhoff Stress Calculations 

3.6.1 Decomposition to Volumetric and Deviatoric Portions 

In many applications (e.g. soil mechanics and biomechanics) the hydrostatic 

pressure and distortional components of Cauchy stress are split up. Similar 

decomposition, with the purpose of decoupling the volumetric and deviatoric (isochoric) 

quantities of second Piola-Kirchhoff stress, in large deformation generalization is 

required, as well. From continuum mechanics (Holzapfel et al., 2000; Liefeith and 

Kolling, 2007) the II-PK stress can be written as 

  

1 T 1 T 1 1 iso vol1
, ,

3
S JF F JF F J C C C S S S                  (3.139) 
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where   2ik jl il jkijkl
      

 
is the fourth-order identity tensor, and   is the fourth-

order projection tensor that provides the deviatoric operand in the reference state. 

d dU J  , and function U  is a purely volumetric contribution in the Helmholtz free 

energy, and det ( )J F . It comes from Coleman’s method, that the II-PK stress is 

derived from the free energy function according to (Holzapfel, 2000) 

  iso vol iso vol2 2 CS S S
E C
    

      
 

 (3.140) 

where:  vol 1 iso 2 3 11
, DEV , DEV [ : ]

3
S J C S J X X X C C

E
         

. Here 

  is a Lagrange multiplier that enforces the isochoric motion (Baek et al., 2007). 

Altenbach and Altenbach (1995) mentioned the easiest way to extend the linear elastic 

response of a material from infinitesimal to large deformation is exchanging the small 

strain ij , by GL strain tensor ijE in the corresponding (isothermal) strain-energy density 

    2 2
( )  ( )  

2 2ij kk ij ji ij kk ij jiw w E E E E            (3.141) 

where   and   are Lame constants. This strain-energy density is known as Saint 

Venant-Kirchhoff. Such strain-energy density is a postulated scalar-valued function on 

one tensorial variable. Therefore, the definition of the II-PK stress (beside volumetric 

and deviatoric quantities) and its relation with GL strain is 

 2 , 2ij ij kk ij ij
ij ij

w wS S E E
E C

   
   
 

 (3.142) 

Another illustration of an elastic constitutive relation for isotropic materials in finite 

strain range may be written as (Bažant et al., 2000) 
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 V D3 2 , 2ij ij ijS KE E K       (3.143) 

Note that here, the material constant K  is formally comparable to the bulk modulus, but 

does not have the same physical meaning, since in large deformation the trace of GL 

strain is not equal to the change of volume. Moreover, if there is not defined any strain-

energy density, through substituting the decoupled Cauchy stress into the definition of 

II-PK stress, one can come up with the next decoupling 

  1 dev vol dev 1TS JF F S J C         (3.144) 

It is noteworthy to mention although devtr( ) 0  , the trace of devS  is not zero because 

of the inverse and inverse-transpose of deformation gradient tensors (Bonet and Wood, 

1997). But, the trace operator may be converted to double contractions with respect to 

Ttr( ) :A B A B ; thus, the following relation is achieved: dev : 0S C  . This result 

enables the hydrostatic pressure portion to be calculated, and the decoupling of II-PK 

stress has the following form 

 1 T 1
Dev

1
( : )

3
S JF F S C C     (3.145) 

3.6.2 Updating Stress Measure 

As mentioned in continuum mechanics (Bower, 2009), Cauchy stress is the best 

actual measure of internal forces (force per unit area) acting inside a deformed object. 

Other stress measures are work-conjugate (or energy-conjugate) to other strain or rate of 

deformation, meaning that the multiplication of stress by the time derivative of the 

related strain (or rate of deformation) measure, gives the rate of work-done by the forces 

(Bower, 2009; Dvorkin, 2010). Also, because GL strain is naturally work-conjugate to 
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the II-PK stress, and they have been widely used in the constitutive models based on 

finite deformation concepts; therefore, in this section, updating the II-PK in a general 

form is explained. Governing equations generally should be linearized and solved by 

incrementally iterative methods, because the tangent stiffness matrix is non-linear with 

respect to displacement components. To derive linearized incremental equations, in 

small-strain notion, the Cauchy stress is updated by accumulating the current stress 

increment to the previous converged stress, which is well-known as 

 t t t t t      (3.146) 

When a constitutive model is written based on large strain and its stress pair, in all 

computational iterations the stress tensor should be upgraded, as well. Bathe et al. (1975) 

mentioned that for updating II-PK stress (in total Lagrangian formulation) only the 

incremental tensor of stress (and even GL strain) must be added to the previous coverged 

stress state. But, mathematically it is not possible. In this section, it is basically shown 

that such additive updating is not exact and even truthful to update the II-PK stress 

similar to small deformation (like Eq. (3.146)), it means that: t t t t tS S S   . Thus for 

this issue, the definition of the II-PK stress in continuum mechanics should be revisited 

 1 T
t t t t t t t t t tS J F F 
      (3.147) 

By replacing the updated Cauchy stress, from Eq. (3.146), which is in the current 

configuration into Eq. (3.147), the II-PK stress for the current analysis time span, can be 

expanded as 

    1 T 1 T
t t t t t t t t t t t t t t t t tS J F F J F F    
           (3.148) 
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Here, the second term is equal to the increment of II-PK stress, t tS  , at the current 

time. But the first term is not equivalent to the II-PK stress at the previous time step. In 

fact, the converged II-PK stress in the previous time is equal to 

  1 T
t t t t tS J F F   (3.149) 

The first term of the summation in Eq. (3.148) is the value of the previous Cauchy stress 

tensor which is mapped backward to the initial configuration by the current deformation 

tensor. Moreover, if the analysis time is small enough (very small), the difference of 

deformation gradient tensor in the previous and current time will be negligible, such 

that: t t tF F  , and one can update the II-PK stress by just simply adding the stress 

increment to the previous II-PK stress. On the other hand, it ought to be recalled that 

reducing the amount of the analysis time increment makes the simulations 

computationally very costly. Also, more computations and increments cause more 

rounds off problems. Consequently, the total II-PK stress for the current time increment, 

(which in constitutive models implementations is usually stored and used for the next 

time increment) can be updated by considering the proper definition of the II-PK stress 

increment, which is the Kirchhoff transformation of the incremental Cauchy stress with 

respect to the incremental deformation gradient, which may be expressed as 

  1 T
t t t t t t t t tS J F F 
          (3.150) 

To find t tS   inside the decomposed form of II-PK stress as shown in Eq. (3.148), one 

needs to consider the incremental deformation gradient as 1
t t t t tF F F 
    and the 

incremental change of volume as t t t t tJ J J   . Thus, Eq. (3.148) is modified to 
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    1 T 1 T
t t t t t t t t t t t t t tS J F F J F S F   
        (3.151) 

This equation means that, in order to upgrade the II-PK stress the previous converged 

Cauchy stress should be transformed backward to the current Kirchhoff configuration. 

Also, the new II-PK stress increment ( t tS  ) should be transformed backward to the 

previous Kirchhoff configuration. This sets both stress tensors in the same configuration 

(initial state). Now the two transformed stress tensors can be added to each other to 

provide the updated II-PK stress. The recent equation may be written in another form as 

  1 1 T T
t t t t t t t t t t t t t tS J F J F F S F   
             (3.152) 

The recent equation means that the previous converged Cauchy stress state, t , should 

be transformed backward according to the current incremental Kirchhoff configuration, 

t tF  . In fact, it puts t  in the same state as t tS  , thus they are allowed to be added. 

Then the result of the summation should be transformed backward with respect to the 

previous Kirchhoff configuration ( tF ) to provide the new II-PK stress. 

3.6.3 Finite Deformation Consistent Tangent for GL Strain and II-PK Stress 

Hiring the consistent modulus is essential in stabilizing the asymptotic rate of 

quadratic convergence in the Newton-Raphson technique for global finite element 

approach. If a constitutive model considers large volume changes and non-linear 

geometry, the exact definition of the consistent tangent stiffness (Jacobian) should be 

used to confirm and guarantee a rapid convergence. These conditions usually come 

across when the models consider either large elastic strains or pressure-dependent 
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plasticity (ABAQUS, 2008). In the former case, the total-form of constitutive equations 

relate the Cauchy stress to the deformation gradient; and in the latter case, rate-form 

constitutive laws are commonly employed. For the total-form constitutive laws, the exact 

consistent tangent is defined through the variation in Kirchhoff stress with respect to the 

rate of deformation, as 

 
( )1

( ) : d or
d

ij
ij ij ij ij

ij

J
J J K D t K

J D t
 

      (3.153) 

In an infinite deformation circumstance, for the rate-form constitutive laws, the Jacobian 

matrix can be modified to the following equation 

 
( ) ( )1

or
( ) ( )

ij ij
ij ij

ij ij

J
K K

J
 
 

   
 

   
 (3.154) 

One of the advantages of using GL strain and II-PK stress is that the complicated 

objective derivations is rather simplified and reduced to the time derivations (in the 

reference configuration). Therefore, finding the consistent tangent modulus is not faced 

to the corotational complexities. Bathe et al. (1975) mentioned that with the aim of 

linearizing the equilibrium equations for both total Lagrangian and Updated Lagrangian 

(UL) formulation, the incremental II-PK stresse are related to the incremental GL 

strains, using the following constitutive tensor 

 ij ijkl klS C E    (3.155) 

where the forth order tensor ijklC is the tangent modulus and is a function of material state 

and the geometry. However, in the constitutive laws for finite deformation, the tangent 

stiffness according to GL strain and II-PK stress can be adjusted to the next expressions 
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( )

( ) : ( d ) or
( )

ij
ij ij ij ij

ij

S
S K E t K

E
 

 
 

 
  (3.156) 

These relations show the consistent elastoplastic (or viscoelastic-viscoplastic) tangent is 

identical to its small strain counterparts. In Appendix B, the derivation of the stiffness 

tangent via the discretization of the principal of virtual work is concisely presented. 

3.7 Infinite to Finite Extension Technique 

The required steps for basically generalizing an infinite constitutive relation to an 

identical finite strain model are presented here. The key point is finding a proper logical 

connection between the finite and infinite deformation formulation counterparts. A well-

organized scheme for solving a chosen governing equation is built on an elastic 

estimator and plastic corrector procedure. This method has been regularly employed in 

infinitesimal deformation problems (Lubliner, 1990). In this work, it is assumed that the 

finite strain is a displacement-driven problem. Thus, the deformation gradient tensor is 

supposed to be known at the end of each analysis time increment; and besides, it is 

constant in the time step. Also, in all iterations inside an increment, the total rigid body 

rotation is assumed to be constant. The generalization steps are explained as following: 

1) The incremental Lagrangian strain tensor for the current time increment should be 

computed through the given and previous deformation gradient tensors, the same as 

Eqs. (3.76), (3.77), or (3.79). 

2) The total rigid body rotation, R , may be calculated by Eqs. (3.69) to (3.71). 
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3) Based on the chosen constitutive model, a “trial stress” should be defined, and the 

yielding condition should be checked regatding this trial stress. If the trial stress 

state does not violate the yield condition, then no plasticity occurred and pF I . 

4) If the trial stress satisfies the yield condition, then the plastic corrector should be 

activated. The strain rate, p , in the flowing rule for plasticity/viscoplasticity in 

infinite models should be replaced by the rate of deformation tensor, pD , as 

introduced in Eq. (3.80). 

5) Utilizing Eqs. (3.89) and (3.95) or Eqs. (3.98) and (3.99), gives the plastic stretch 

tensor, vpU , in the current time increment, according to the estimated trial stress. 

Then, the plastic deformation gradient tensor and the plastic strain rate will be 

computed by: vp vpF RU  and Eq. (3.58), respectively. 

6) For the elastic part, there exist two situations: 

 If the selected small strain constitutive model has a specific relation for 

assessing the elastic response; then, based on the procedure in Appendix A, the 

total Lagrangian elastic strain tensor should be calculated. Then by using Eqs. 

(3.101) and (3.103) the elastic stretch tensor, veU  and its time derivative, veU , 

will be found. Afterwards, the computed incremental Lagrangian strain tensor in 

step (1), should be checked with Eq. (3.54) or Eq. (3.55). Then the convergence, 

based on the increment of strains, must be checked. The tangent stiffness matrix 

is subsequently computed through Eq. (3.156). The II-PK stress will be updated 

by Eq. (3.151). If the convergence was not satisfied, then the procedure from 

step (4) should be repeated. 
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 If there is no criteria in the selected constitutive model for the elastic portion of 

the total response, and also if the elastic part is in the small deformation range; 

then like the type-3 of large deformation approach (Eq. (2.3)), the elastic strain 

can be calculated by subtracting the plastic strain from the total stain as: 

e pE E E  . Otherwise, the elastic response is deduced from the total 

deformation gradient, by 
1e pF FF


 , and then the updated plastic deformation 

gradient, through Eq. (3.47). 

A consequence of these correspondences is that the explained procedure identically 

converts a combined elastoplastic (or viscoelastic-viscoplastic) constitutive model which 

is based on small strain concept to those in large strain formulation. 

3.8 Summary 

This study, which presents in detail the large-strain formulation, proposes a 

generalization procedure for converting a standard relation of small-strain constitutive 

law to an arbitrarily large strain model. The approached method for generalization is 

accomplished with the demand that the large-strain model is obtainable by some simple 

modification and generalization of an existing small-strain constitutive model. 

The steps described for the generalization are purely kinematic based; and 

therefore, the above procedures are applicable to different types of materials within the 

framework of additive/multiplicative decomposition of elastic and plastic strains. 

Because no restriction is considered in the extension method; hence, the elastic and 

plastic responses can be selected independently and arbitrarily (e.g. anisotropy). 
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Moreover, because the rigid body rotation is taken into account in the plastic 

deformation gradient; therefore, contrary to other finite deformation models, in this 

approach the plastic spin is not zero. 

The extension method in this work can simplify the implementation of finite 

deformation models through incremental updates. Also, the proposed generalization 

technique indicates that the consistent tangent modulus can be formulated equivalently 

the same as in the small strain concept, but regarding the utilized stress and strain 

measures. 

 

 

 

CHAPTER IV 
 

GENERALIZING SCHAPERY VISCOELASTIC MODEL TO  

MULTIAXIAL LARGE DEFORMATION FRAMEWORK 
 

4.1 Introduction 

In this chapter, a numerical integration algorithm for the non-linear viscoelastic 

behavior of materials has been derived according to Schapery’s approach which is built 

on the Gibbs complementary energy. In this model, the II-PK stress is used as the stress 

quantity and GL as the strain measure, for analyzing the viscoelastic behavior in finite 

deformation range. 
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One of the most important advantages of using II-PK stress and its energy 

conjugate strain pair (GL strain) is that the material time derivative can be applied 

directly without considering any special corotational derivation to the stress state, and/or 

Lie derivative to the strain measure; because, these stress and strain quantities have been 

defined in material (initial) configuration. In fact, the corotational rates such as Jaumann 

and Green-Naghdi for II-PK stress gives the time rate of the II-PK, and also the 

Truesdell rate itself is exactly the time derivation of II-PK stress (Johnson and 

Bammann, 1984; Nagtegaal and De Jong, 1982). Also, the Lie derivative (Simo, 1988; 

Yano, 1957) of the GL strain delivers the time derivation of GL strain tensor, because of 

the nature of the push-forward (from material to spatial configuration) and pull-

backward (from spatial to material state) of GL strain tensor. Otherwise, if other stress 

and strains are employed, the ordinary differential equation (ODE) for the constitutive 

model should be revised [see Eq. (4.12)], such that instead of time derivation for strain 

tensor, Lie derivative should be applied. Also, if the time derivation is applied to the 

stress tensors in the ODE, it should be replaced by one of the corotational rates. These 

imply more difficulties to the solution of the ordinary sets of equations. 

This three-dimensional non-linear viscoelastic material model is integrated 

within a displacement-based finite element context. The deviatoric and volumetric 

responses are decoupled in two ways because of the nature of Lagrangian strain measure 

in finite deformation framework. The strain tensor is decomposed into instantaneous and 

hereditary portions. The hereditary strains are updated at the end of each analysis time 

increment using a recursive formulation, the same approach as proposed by Haj-Ali and 
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Muliana (2004). The method for calculating the trial stress is also enhanced to reduce the 

number of computational iterations in the material level. Furthermore, in order to 

guarantee and enhance the convergence of stress state, the consistent tangent compliance 

matrix is derived regarding to the II-PK stress definition and the method of splitting the 

Lagrangian strain. The presented equations are derived to be effective in modeling the 

viscoelastic behavior of isotropic materials in finite strain range. 

4.2 Single Viscoelastic Convolutional Integral 

In this section, a Schapery-type single integral model is derived based on 

irreversible thermodynamics process. Schapery showed the energy equation is capable to 

model the non-linear coupled thermo-viscoelastic materials (Schapery, 1997). In the 

classical thermodynamic concept, the state of a material can be fully characterized by 

some independent state variable, which depends on the physical thermodynamic nature 

of the system. Because, the Helmholtz free energy under isothermal condition can be 

explained in terms of stress and strain tensors, and some proper internal state variables 

(ISVs); thus, Schapery hired the Gibbs energy concept (which is the negative of the 

complementary energy of the Helmholtz free energy) and introduced it as a function of 

stress, temperature, and internal state variables. The Gibbs model for describing the 

thermo-viscoelastic bodies which was presented and used by some researchers (Khan, 

2011; Schapery, 1969a; Schapery, 1997), has the following form 

 0

1

2m m mn m nG G A B      (4.1) 
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where 0G , mA , and mnB  are functions of stress and temperature. In Chapter 3, it was 

shown that II-PK stress and GL strain are both naturally work-conjugate. Since polymers 

belong to the class of material with memory (O'Dowd and Knauss, 1995); thus, stress or 

strain at any time should be determined by the history of deformation gradient. Besides, 

from thermodynamics, II-PK stress is derived from deformation gradient quantity as 

 1
ij ik

kj

S F
F

 



 (4.2) 

Using the chain rule as: 
E

F E F
  


  

, and also substituting the GL strain relation, 

 T1

2
E F F I  , one can obtain the II-PK stress from the Helmholtz free energy as 

 ij
ij

S
E





 (4.3) 

Also, the Helmholtz free energy and the Gibbs energy functions are related by a 

Legendre transformation. Therefore, the derivation of Gibbs energy with respect to the 

II-PK stress gives the total GL strain at a certain time, as 

 (in vector form)i
i

GE
S


 


 (4.4) 

Replacing G  by its relation from Eq. (4.1), one can get
 

 0 1

2
m mn

i m m n
i i i

G A BE
S S S

    
   

  
 (4.5) 

By neglecting the higher order terms of internal state variables ( m n  ), the reduced 

form for the incremental strain can be defined as next 
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 d m
i m

i

AE
S





 (4.6) 

Based on the second law of thermodynamics, one may write 

 P 0i ij ij i i
i

GT S E q    



     
   (4.7) 

where   is the entropy production in the system. Hence, the entropy production rate is
 

 0i
i i

GT 



  
   (4.8) 

Then, it can be rewritten as: m
m

GT 



 


 
 
(summation over m ), and substituting Eq. 

(4.1) into the current relation, and differentiating the related terms, the thermodynamic 

forces can be found from 

 m mn n m
m

G A B f



  


 (4.9) 

This model is equivalent to the generalized nonlinear Voigt model (Khan, 2011). The 

sub-indices m  and n  are the numbers of dashpots. To describe the changes in the 

internal state variables,  , a set of equations can be introduced as 

 mn
m n

T

C f
a

   (4.10) 

This set of evolution equations relates the ISVs to the thermodynamic forces, and in 

which mnC  is presumed constant and symmetric positive-definite matrix, and Ta  is a 

temperature dependent parameter and is called the temperature shift factor. At the 

reference temperature level it is equal to 1. As a matter of fact, all non-linearity comes 
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from the entropy production through the parameter Ta  ( 0Ta  ). Now, by rearranging 

Eq. (4.10), the forces can be written 

 1
T m mn n m T mn na C f f a C      (4.11) 

Substituting Eq. (4.11) into Eq. (4.9), then the required differential equations set for 

finding the ISVs can be expressed as 

 1 1
m mn n T mn n T mn n mn n mA B a C a C B A           (4.12) 

Now, in order to solve the recent set of equations, under general input conditions (i.e. the 

coefficients are time dependent), a proper form for the tensor B  is required to be 

assumed. In fact, the relation of B  with stress and temperature should be defined. 

Therefore, similar to the definition of  Ta , tensor B  can be explained 

 ( , ) , ( , ) , (0, ) 1mn mn i R mn i R RB B S T b K b b S T b T     (4.13) 

in which mnK  is a constant symmetric tensor, and is defined at reference temperature. 

Parameter b  is a function of stress and temperature, and its magnitude at reference  

stress state and temperature is equal to 1. Moreover, the reduced time,  , is defined as 

 
0

d d
d

t

T T

t t
a b a b

 


     (4.14) 

The magnitude of 
1

b
 is considered as the stress shift factor, Sa . This parameter is also 

analogous to the strain shift factor, a , when the Helmholtz free energy is utilized to find 

stress as: i
i

S
E





. Thus, the reduced time will be rewritten as 
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0

d
t

S T

t
a a




   (4.15) 

Multiplying both sides of Eq. (4.12) by 
1

b  
(or Sa ) and replacing the time derivative with 

the reduced time derivative, lead to 

 1 d

d
n m

mn mn n
AC K
b

 


    (4.16) 

Now, multiplying both sides of the recent equation by lmC , gives
 

  1 d d

d d
n m n m

lm mn lm mn n lm lm mn n lm
A AC C C K C C K C
b b

  
 

       (4.17) 

With the purpose of solving this system of ODEs, through hidden coordinates one can 

diagonalize the second order coefficient tensors, lmC  and mnK . Because of diagonalizing 

procedure for Eq. (4.17), the quantity of the ISVs will not be the same as before, even 

though the same symbol,  , is being used. Thereby, the uncoupled set of equations in 

terms of internal state variables can be written as 

  d
, (no summation over )

d
i

i i i S i iC K a C A i 


   (4.18) 

This new set of equations has constant coefficients, and they are linear. Schapery 

(1969a) examined the thermodynamics limitations that affect Eq. (4.18). Briefly, the 

shift factor is greater than zero, and since mnC  and mnK  are positive definite matrices, 

therefore the diagonalized representations are also positive ( 0 , 0i iC K  ). Moreover, 

the free energy is independent of all hidden coordinates, and in view of Eq. (4.4), the 

observed coordinates are unaffected by such hidden coordinates. The term i iC K  is also 
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defined as 1 i  and is called the relaxation time. The goal is expressing the ISVs ( i ) in 

terms of the applied forces. Henceforth, in order to solve Eq. (4.18), both sides will be 

multiplied by  exp i 
 
as the integration factor, and using 1 ( )i i iC K  , delivers 

 
d 1

exp exp
d

i
i S

i i i i

Aa
K

 
   
        

        
        

 (4.19) 

The solution of the ISVs will be as 

 
0

d

1
exp exp d

t
i

i S
i i i i

V U

Aa
K

  
  

       
                  


 

 (4.20) 

Applying the integration by parts to Eq. (4.20), simply provides 

 
 

00

d1
exp exp exp d

d

t t
S ii

i S
i i i i i

a AAa
K K

   
   

                      
  (4.21) 

Since at 0t   the system is in rest, so iA  is zero, and the above expression can be 

simplified for finding i  , as 

 
   

0

d1
1 exp d

d

t
S i

i
i i

a A
K

 
 

 
   

       
  (4.22) 

The non-linear responses of several materials are recorded and shown that the time-

dependent properties can be explained in terms of isothermal linear viscoelastic 

(Schapery, 1969a). This behavior is obtainable by assuming a form for vector iA  like 

  ( ) , where: , and ( ) 0i ij j j j RA T K S S S S T T     
  

 (4.23) 
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in order to characterize the thermo-mechanical performance of the creep function. Here

ijK
 
is a constant tensor, jS  is the II-PK stress, and T  is temperature and ( )T  is a 

thermal function. Even though in practice the temperature and forces should be applied 

simultaneously, in this study the effect of temperature is not considered. Thus, based on 

the new mathematical form for iA , the next useful expressions may be derived 

    d d , jm
S i ij S j mj

i i

SAa A K a S K
S S


 

 




 (4.24) 

Substituting Eq. (4.24) into Eq. (4.22), the expressions for the ISVs may be modified to 

   
0

d
1 exp d , (summation over and )

d

t
S jij

i
m m

a SK
j m

K
 

 
 

   
       




 (4.25) 

Replacing this relation for i  into Eq. (4.6), and after simplifying, the incremental strain, 

d iE , will be obtained as 

 ln

0

d summation over
d 1 exp d

, , , andd

t
S nj jl

i
i m m

a SS K K
E

m n l jS K
  
 

                             



(4.26) 

To derive the Schapery-type single integral, the Prony series is introduced as 

  
NP

ln

1

1 expjl
nj

m m m

K K
D

K



    
      

    
  (4.27) 

in which NP  is the number of Prony series terms. Utilizing Eqs. (4.26) and (4.27), 

finally the total strain can be shown to have the form 

  
 

0

d
d

d

t
S jo n

i nj
i i

a SG SE D
S S

  


                



 (4.28) 
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Here, the following non-linear parameters, as functions of stress state are defined for the 

viscoelastic formulation 

 0
0 1 2

0

1
( ) , ( ) , ( ) S

G S Sg S g S g S a
S D S S S

 
   

 

 
 (4.29) 

In Eq. (4.29), the functions 0( )g S , 1( )g S  and 2( )g S  characterize the non-linearity of 

the instantaneous creep response, the effects of the transient compliance, and the effects 

of loading rate on viscoelastic strain (creep response), respectively. By considering Eq. 

(4.29), the final viscoelastic formula for investigating the creep response, is expressed 

according to the II-PK stress and GL strain in the Schapery single integral form as
 

      
  2

0 0 1

0

d
d

d

g S S
E D g S S g S D

 
     


    

  (4.30) 

This equation reduces to the linear superposition principle when: 0 1 2 1Sg g g a    , 

and was proposed and applied to polymers by several researchers (Leaderman, 1943; 

Muliana and Khan, 2008; Schapery, 1974). This linear integral form is equal to the first 

term in the multiple integral form proposed by Green and Rivlin (1957), or the first term 

of the multiple superposition principal (MSP) by Pipkins and Rogers (1968). Moreover, 

Schapery (2000) found out that the MSP model has some restrictions to be applied to 

multiple step loading and unloading for viscous solids. But on the other hand, the single 

integral model is able to characterize a wide range of materials (Schapery, 1969b). It 

should be noted that Eq. (4.28) shows the functions 1g  and 2g  are not independent. For 
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example, if 1g  changes linearly like 1 ( )g S S   ; then, the general solution for 

function S


 is 2

2
S S S  


. Replacing this result to Eq. (4.29) gives the function 2g  as 

 2 2S S
Sg a a S
S

     
 


 (4.31) 

Eq. (4.29) illustrates that not only 1g  and 2g  are dependent, but the stress shift factor, 

Sa , and 2g  are also dependent. Thus, if the stress shift factor is considered 1Sa   (in 

the reference temperature), one can come up with 2 ( ) ( )
2

g S S   . Considering the 

inter-dependency of 1g  and 2g , along with 1Sa  , makes the viscoelastic model 

calibration much easier. Schapery (1966) also stated that one may take any finite strain 

quantities that completely define the nature of deformation, and this choice is arbitrary. 

For example, he chose Boit as strain and symmetric Kirchhoff (II-PK) as stress. But 

again regarding to the energy conjugacy concept in Chapter 3, the Boit strain and the II-

PK stress are not work conjugate. 

4.3 Double Viscoelastic Convolutional Integral (Higher Terms) 

In Section 4.2, it was assumed that the higher order terms do not affect the 

magnitude of the strain, because in small deformation condition, the multiplication of 

m n   is negligible. But, if the strain level is higher than the moderate large deformation 

range (more 10%); then, the effect of the related terms will be significant and should be 

incorporated. It means that Eq. (4.5) must be considered instead of Eq. (4.6) to take into 

account the non-linearity that relates to the contribution of higher order terms of the 
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Gibbs energy (in regarding to the applied stresses). Recall that the tensor B  was defined 

as: mn mnB b K , where b  is a scalar function of stress. Therefore, the second term of 

Eq. (4.5) can be expanded as 

 
( )mn mn

m n m n mn m n
i i i

B bK bK
S S S

       
 

  
 (4.32) 

Now, substituting Eq. (4.22) into Eq. (4.32) leads to 
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              


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

  (4.33) 

Here are summations over the indices. For simplifying the recent equation, one of the 

integrands coefficients needs to be diagonalized, since there is just one tensor mnK  for 

multiplying to the two integrands coefficients; so, the first integral is diagonalized as 
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   (4.34) 

Now, multiplying the mnK  into the second parentheses, then utilizing the diagonalized 

relation in Eq. (4.34) through hidden coordinates (Schapery, 1969a), along with the 

definition of the Prony series in Eq. (4.27), one can rewrite Eq. (4.33) as 
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 (4.35) 
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Henceforth, Eq. (4.5) that is the general form of Eq. (4.6) will be written as 

 
 

   
 

 
0

NP

10 0

d 1
d d

d 2

d d
1 exp d d

d d

t
jm

i mj
i i

t t
m l

ml
p p

S bS bE D
S S

S b S b
D

  


 
   

  

          

                       



 



   (4.36) 

Eventually, recalling the relations for non-linear parameters in Eq. (4.29), then the 

mathematical formulations for viscoelastic convolution integral with lower and higher 

internal state variable terms can be expressed as 
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 (4.37) 

This equation has the first two terms of Eq. (4.30) which are added by the multiplication 

of the higher terms of transient compliance. In this case, one can factorize the common 

term in Eq. (4.37) which is the convolution integral, and present it in the next form 
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  2

0 0

0

d
d

d

g S S
E D g S S P S D

 
     


    

  (4.38) 
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         

  (4.39) 

As can be observed, Eq. (4.38) has the same form similar to Eq. (4.30). In fact, the 

interesting outcome of Eq. (4.38) and (4.39) is that through considering the higher terms 
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of internal state variables in the derivations, the final form of the viscoelastic strain is the 

same as the single convolution integral presented in Section 4.2. The only difference is 

that in Eq. (4.38) function  1g S

 
has been replaced by a new function  P S . In this 

case, similar to Eqs. (4.30) and (4.31), the non-linear function P  is dependent on 

functions 1g , 2g , and Sa . This outcome basically shows a Schapery-type viscoelastic 

model in large deformation concept has the same form like the conventional single 

integral formulation, and only proper stress and strain measures should be hired to 

transform it into the finite strain range. Therefore, in order to generalize the viscoelastic 

model to multiaxial framework, from now on Eq. (4.30) will be used, since there is no 

difference between Eq. (4.30) and (4.38) for finding the function P  or 1g . The only 

difference is the interconnectivity of the non-linear functions.
 

4.4 Generalizing Single Viscoelastic Convolution Integral to Three-Dimensions 

Based on the one-dimensional Schapery model for non-linear viscoelasticity, a 

three-dimensional constitutive equation is developed for isotropic non-linear viscoelastic 

materials. Assuming the separation of the hydrostatic and deviatoric responses, the 

constitutive model is expressed in incremental system. This goal can be achieved by 

updating the hereditary integrals at the end of each time increment through a recursive 

method for both volumetric and distortional portions. The proposed model can be 

implemented in any finite element package. 
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4.4.1 Decoupling Volumetric and Deviatoric Strains and Hierarchical Integral 

In the previous subsection, it was found that the single convolution integral does 

not limit to infinite deformation. The derivations proved that considering the lower 

(approximation) and/or higher terms in Gibbs energy develop the same viscoelastic 

integral form, which can be assigned to the diagonalization process through the hidden 

coordinates. Even though Schapery (1969a; 1964), Pipkins and Rogers (1968), and 

O’Dowd and Knauss (1995), replaced the small strain and Cauchy stress with other 

strain and stress measures (that are defined for representing finite deformation) to extend 

the infinite strain to large deformation model, there exist some problems while 

generalizing and utilizing the single integral form. Generalization from 1D to 3D needs 

the volumetric and deviatoric part of strain to be defined, and also the consistent tangent 

should be derived and revised. 

The numerical formulation in the previous sections for uniaxial viscoelastic 

behavior is now employed to be extended as multiaxial (3D) constitutive relations for 

isotropic materials. Even though Eqs. (4.30) and (4.38) take into consideration the 

anisotropy, while generalizing these models to multiaxial framework, keeping anisotropy 

property is difficult and introduces more parameters and concerns. For this purpose, the 

deviatoric and volumetric stress/strain relations should be decoupled. The procedure can 

be accomplished by assuming that the total strains are known in each analysis time span, 

and also the increment of strain rates is constant. This assumption is consistent with 

several non-linear constitutive laws that have been implemented within a displacement-
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based finite element context (Muliana and Khan, 2008). In uniaxial formulation, the 

single integral form in Eq. (4.30) or (4.38), can be discretized as 

  
NP

1 2
1

( ) ( ) ( ) ( )t t t
o o n n
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E t g D S t g D g S t q t
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The convolutional integral can be divided to recursive parts, from previous and current 

time increment. There are two ways to split-up the hereditary integral, with or without 

assuming that the term 2g S  changes linearly over the current time step, t . The 

variable t  designates the time increment. The recursive technique along with assuming 

the linear change of 2g S , can be presented through the next equation, which shows the 

thn  term of the hereditary integral 
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 (4.42) 

For more detail the reader is referred to (Haj-Ali and Muliana, 2004; Lai and Bakker, 

1996). On the other hand, if the assumption of linear change of 2g S  is not considered, 

the hereditary decomposition can be derived as 
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 (4.43) 

Now, in order to discretize and solve the integral in the recent equation, by utilizing the 

trapezoidal rule, and simplifying the derived relations, one can get 
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 (4.44) 

The result of the recent derivation is almost equivalent to Eq. (4.42) since the trapezoidal  

approximation is also valid when the time increment is small, and in that case the term 

2g S  can also change linearly in each analysis time step, t , and the result will be the 

same. Therefore, the recursive form obtained in Eq. (4.42) will be hired for the following 

derivations. So, in uniaxial formulation the total strain in the single integral form (either 

Eq. (4.30) or (4.38)), can be discretized as 
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 (4.45) 

In order to generalize Eq. (4.45) to three-dimensions, by inverting Eq. (3.141) (see 

Chapter 3) and similar to the separation technique in mechanics of material that is also 

mentioned by Darabi et al. (2011), the decomposition of GL strain with respect to the 

volumetric and deviatoric parts of II-PK stress, can be obtained as 

V D V D1 1
, (all are in undamaged configuration)

3 2 3 2ij ij ij ij ij
B JE S S S S

K G
     (4.46) 

where K  and G  are the bulk and shear moduli, respectively. Utilizing the latest 

equation along with considering the new modified Schapery single integral model in Eq. 

(4.30), and after some simple mathematical manipulations, the constitutive model can be 

separated to the deviatoric and volumetric components of the non-linear viscoelastic 

strain (at any typical time), and can be demonstrated as 
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Here, J  and B  are the transient shear and bulk compliances, and the material constants 

0J  and 0B  are the instantaneous effective elastic shear and bulk compliances, 

respectively. Therefore, the recursive relation in Eq. (4.42), for hereditary integral, will 

be decoupled to volumetric and deviatoric integral and extended to multiaxial form as 
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 (4.51) 

With regards to Eqs. (4.45) to (4.51), and decomposing and simplifying the strain 

components by algebraic manipulations, the volumetric and deviatoric strain tensors can 

be derived as 
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It should be mentioned that the differences between Eqs. (4.47) to (4.51) and those 

presented by other researchers (Haj-Ali and Muliana, 2004; Huang et al., 2011a; Lai and 

Bakker, 1996) is that they are stated in the undamaged (effective) configuration allowing 

one to couple the viscoelastic model to any damage evolution law. The other difference 

comes from the nature and definition of Lagrangian strain and II-PK stress (for finite 

strain) which deliver a volumetric tensor instead of a scalar value (in small deformation 

form). Hence, the volumetric and deviatoric decoupling provides two strain tensors and 

also the decomposed hereditary integrals for volumetric portion (Eq. (4.51)) is also a 

tensor rather than a scalar. 

4.4.2 Trial Stress and Corresponding Enhancement 

In the Schapery viscoelastic constitutive model, in each analysis time increment, 

an approximation of the unknown stress increment needs to be determined. This 

estimation is based on the strain increment, hereditary integrals, and the Prony series. 

Therefore, a trial stress can be found for the deviatoric and volumetric parts of the strain 

tensor, and then the other viscoelastic calculations can be conducted based on the 

computed trial stresses. Here, in order to find the quantity of the trial stresses to have a 

proper estimation of the stress state, and also to expedite the convergence in the 

viscoelastic model, the related equations for the trial stresses have been presented, and 

then a new approach to improve the values of these trial stresses are explained. Recalling 

the incremental GL strain [see Eq. (3.79)], it is expressed as a function of current and 

previous strains, and the previous deformation gradient 

  T 1
t t t t t t tE F E E F 
     (4.54) 
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Based on Eqs. (4.52) and (4.53), and succeeding the same methodology as Haj-Ali and 

Muliana (2004) used, the deviatoric and volumetric strain increments for the new 

modified viscoelastic model can be written as 
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 (4.55) 

Substituting the related formula in the above equation, one can get 
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Moreover, for finding a trial stress, since there is no reasonable relation between the 

amount of the previous and the current time increment, an assumption should be applied. 

If t t t      is considerd, then the recent equations will be reduced to the following 

forms that are appropriate for analysis with fixed time increment 
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 (4.58) 
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 (4.59) 

The difference of the incremental volumetric strain in Eq. (4.58) and the one proposed 

by Haj-Ali and Muliana (2004) is that since GL strain is utilized; thus, the volumetric is 

a second order tensor (not a scalar). An immediate result of the latest equations is that 

for computing the trial stress, one also needs to assume some approximations, as 

 ,trial ,trial
1 1, ,t t t t t t t t t t tJ J J B B B g g        (4.60) 

According to these approximation assumptions, one can find the trial incremental 

volumetric and deviatoric stresses as 
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 (4.61) 

Thus, regarding this equation, Eqs. (4.58) and (4.59) will be reduced to the following 

relations for computing an estimation of the new stress state (trial stress) in the current 

time increment as 
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 (4.62) 
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 (4.63) 
 
In these equations for the trial stresses, the effects of the non-linear parameters in the 

current time have been removed. Thus, for enhancing these trial stresses, because the 
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estimation for stress state is now available, the effects of the non-linear terms in the 

current states should be carried out. Therefore, the subsequent scheme can be followed 

At first, one needs to compute the stress increments utilizing Eqs. (4.62) and (4.63). 

Afterwards, the values of the non-linear parameter 1
tg  should be computed based on the 

new updated stress. Therefore, with respect to the following equalities 
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 (4.64) 

and through substituting the above equalities into Eqs. (4.58) and (4.59), the updated 

modified trial stresses may be shown as 
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 (4.65) 
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 (4.66) 

The recursive method introduced by Haj-Ali and Muliana (2004) and is modified here, 

reduces the computational cost of numerical integration. Also, the modified trial stresses 

can reduce the number of iterations in the material level. 
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4.4.3 Consistent Tangent Compliance 

According to the essence of incremental solution, with the purpose of 

accelerating the numerical convergence and also arriving at a correct stress state in each 

given strain increment, the consistent tangent stiffness should be derived and employed. 

Otherwise, the strain increments must be very small to satisfy the accuracy of stress 

updates and also to minimize the errors of linearization. Here, an iterative method is 

hired by defining the strain residuals. The equation for residual strain may be defined 

through both the total GL strain, or based on the increments of the GL strain. In the case 

of the current modified Schapery single integral viscoelastic model (containing II-PK 

stress and GL strain), the consistent tangent quantity which is a fourth-order tensor and 

is shown in the next equation, can be derived in two approaches regarding to the 

formulating of the residual strain tensor 

 
t
ijt

ijkl t
kl

R
C

S





 (4.67) 

In the first case, based on additively decomposition of the volumetric and deviatoric 

portions of the incremental strain, the quantity of the residual tensor is expressed 

 ,dev ,volt t t t
ij ij ij ijR E E E     (4.68) 

In this relation, t
ijR  is the residual tensor and t

ijE
 
is the current increment of the GL 

strain. Now, by substituting Eqs. (4.58) and (4.59), the residual tensor can be written as 



120 
 

   
NPT ,dev ,dev ,dev

1 1 ,
1

NP
,dev

2 1 1
1

,vol

1
exp( )

2

1 exp( ) 1 exp( )1

2

t t t t t t t t t t t t t t t t
ij ij ir rs rs n n rs n

n

t t t
t t t t t t tn n

n rst t t
n n n

t t t t
rs

R E F J S J S J g g q

g J g g S

B S B S

 

   
   

    




  







       

      
    

 





 

 

NP
,vol ,vol

1 1 ,
1

NP 1,vol
2 1 1

1

1
exp( )

3

1 exp( ) 1 exp( )1

3

t t t t t t t t
rs n n rs n

n

t t t
t t t t t t t t tn n

n rs sjt t t
n n n

B g g q

g J g g S F

 

   
   

  



    




   

       
      




 (4.69) 
 
One can derive the consistent tangent through differentiating the proper terms of Eq. 

(4.69), and should recall that the derivation of the terms in the previous time increment 

with respect to the current stress state will vanish. The derivation and simplification of 

the Lagrangian residual strain tensor with respect to the II-PK stress tensor is explained 

in detail in Appendix C. However, the simplified result of the viscoelastic tangent 

compliance tensor is presented here, as 

   T 1 ,vol ,dev

NP
1 ,dev ,vol

, , ,
1

NP
,dev ,vol

2
1

1

3

1 1
exp( )

2 3

1 1

2 3

t t t
ij t t t t t t t

ir rk sl kl rs rs rst t t
kl kl kl

t t t t t
kl n n n rs n n rs n

n

t t t t t t
n rs n rs

n

R B JF J B J C C S S
S S S

J q B q

g J S B S

 

 

 

 



  



   
      

     
 

   
 







   12 31 exp( )
exp( )

t
t t tn

kl kl n sjt
n

F   
 


    

         


 (4.70) 

With the purpose of modifying the recent outcome in such a way to be a practical 

derivation for the aim of implementation, this equation should be written based on the 

increments of effective stress. Because in incremental solution, the derivation of the non-

linear material parameters (here: 1
tg , t

Sa , and also tJ  and tB ) are achievable regarding 
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to the effective stress. Therefore, the derivation of the effective stress, S , with respect 

to the total stress tensor should be illustrated. This derivation is obtainable as explained 

in the next relation. 

 13 1 1
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 (4.71) 

The derivation of the incremental stress regarding the total stress is also explained in 

Appendix C. Thus, taking into account the latest relation, Eq. (4.70) will be modified as 
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 (4.72) 

where 

1 2 31 1 1 1 1, ,
t t tt t t t t
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    

Now, if in a large deformation problem the time increment becomes larger, or the 

magnitude of volumetric portion of strain is comparable with its distortional counterpart; 

then, the additive decomposition of the volumetric and deviatoric strains will not be 

acceptable. In order to minimize the residual strain, in each time increment the 

deformation gradient tensor given by Finite Element Analysis (FEA) and the one 

computed through the constitutive models (here is viscoelasticity) should be close 



122 
 

enough to deliver the same quantity of GL strain. However, instead of comparing the 

total GL strain, the residual of the incremental GL strain can also be computed and 

compared. The mentioned inter-span deformation gradient and the related residual in a 

typical iteration are shown schematically in Fig. 4.1. Therefore, in each increment 

subsequently after finding the total deformation gradient, the residual of the incremental 

GL strain can be calculated as 

  T FEM 1
( ) ( ) ( ) ( ) ( )

1
, where:

2n n n n nE F F I F F F        (4.73) 

 

 

Fig. 4.1. Graphical depiction of iteratively updating deformation gradient tensor and its 
corresponding residual strain, according to each updated deformation gradient tensor. 
 

In the final iteration, the difference of the deformation gradient, ( )nF  will be equal to 

the identity tensor since FEM
( )nF F . For the rest of expressing the derivations, in the 

following equations, the iteration number, n, is removed from the subscripts. Hence, let’s 
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redefine the residual strain tensor (the same as Eq. (4.73)); thus, the residual strain 

instead of Eq. (4.68) will be expressed as 

  T1

2
t t
ij ij ij ijR E F F I      (4.74) 

Therefore, the forth order compliance tensor should be written as the next form 
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 (4.75) 

Through substituting FEM 1F F F    , and recalling the decoupled veF  to volumetric and 

deviatoric, and rotation as ve ve ve
dev volF RU U  (see Chapter 3); then, the differentiation of 

incremental deformation gradient with respect to the incremental II-PK stress can be 

described in this form 

    1 1 1FEM ,vol ,dev ve2 2mj t t
mp pskl pskl xjt sx sx

kl

F
F K I E G I E F

S
          

 (4.76) 
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It is important to recall: vol vol2U I E   and dev dev2U I E   from Chapter 3. Now, 

by considering the result of Eq. (4.76), and similar to Eq. (4.72), the consistent tangent 

compliance while the volumetric and deviatoric strains cannot be separated additively, 

may be written as the next relation, in which 1
n , 2 , and 3  are the same as expressed 

in Eq. (4.72). Similar to the pervious approach of derivations of the compliance tensor, 

the procedure to get the following equation is explained in Appendix C. 
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4.5 Summary 

A Schapery-type non-linear viscoelastic material model based on II-PK stress 

and GL strain has been derived through Gibbs energy, to enhance the Schapery single 

integral viscoelastic model to a large deformation framework. The state variables in this 

approach are strain-based. Here, it has been shown that the derived model through using 

the higher order terms of internal state variables in the Gibbs energy delivers the same 
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mathematical form when the lower terms are used. The effects of the additional higher  

order non-linear terms can be taken into account to the computational model through 

function 1( )g S , which is designated to capture the effects of the transient compliance. 

Because the volumetric and deviatoric effects are incorporated in the material 

properties of the model, and also the distortion and dilatation components of the stress 

measure are separated, as well as the strain components; thereby, the model is capable to 

distinguish the differences between the compression and tension responses of polymers. 

The developed computational method for the numerical integration is built on Lai 

and Bakker (1996) approach for the 3D representation of non-linear viscoelastic model, 

and also Haj-Ali and Muliana (2004) recursive integration along with an iterative 

scheme in order to satisfy the constitutive strain residual. Because the nature of the 

employed stress and strain measures was different than the ones used by the previous 

researchers, thus the consistent tangent compliance is identified and revised to ensure 

and expedite the convergence of the computational model. 

Also, the derived constitutive law is suitable only for small and large deformation 

gradient viscoelastic problems under quasi-static loading. 
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CHAPTER V 
 

APPLYING UNIFIED LARGE DEFORMATION VISCOELASTIC-

VISCOPLASTIC-VISCODAMAGE CONSTITUTIVE MODEL TO 

POLYMERIC MATERIALS 
 

5.1 Introduction 

Polymers and polymer composites are complex materials that are increasingly 

being used to fabricate structural components in many industrial applications (Ericson 

and Berglund, 1993; Lee and Jang, 1999; Megnis et al., 2001). Polymeric materials offer 

a wide range of advantages, such as high strength-to-weight ratio, impact resistance 

(through mixing with particles and/or different fibers), high flexibility, recyclability, 

corrosion resistance, low cost, and fast processing times, that make them very attractive 

materials for many industries (e.g. automotive, defense, sport, civil, aerospace, health, 

etc.). Here, a combination of non-linear thermo-viscoelastic (Schapery’s non-linear 

viscoelastic model for predicting the recoverable strain), thermo-viscoplastic (Perzyna’s 

viscoplastic theory for addressing the hardening) laws, similar to the recent work by 

Huang et al. (2011a) is used as a unified model. Then, the unified models are generalized 

to finite deformation framework. The required algorithms for extending the small strain 

elastoplastic models to large deformation range are discussed in detail in Chapter 3. 

Moreover, the generalized Schapery viscoelastic model used to predict the large 

deformation behavior, is derived and explained in Chapter 4. By utilizing the proposed 

algorithms in Chapters 3 and 4, the unified non-linear thermo-viscoelastic, -viscoplastic, 
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and -viscodamage models are modified to be able to capture the large deformation 

response of polymers and polymer composites. Afterwards, the generalized unified 

models have been implemented into the well-known commercial finite element code 

ABAQUS (2008) via the user material subroutine, UMAT. 

The outline of this chapter is as follows. In Section 5.2, the coupled models for 

non-linear viscoelastic, viscoplastic, and viscodamage is presented. In Section 5.3, the 

numerical algorithms and computational implementation of the constitutive equations in 

the finite element code ABAQUS (2008) are presented. Section 5.4 is devoted to the 

calibration of model parameters. Section 5.5 contains the comparison of the predictions 

of implemented models and the response of PMMA (Polymethyl-metacrylate) polymer 

by using a set of creep-secondary, creep-tertiary tests, and also stress-strain behavior at 

three different strain rates, in two temperature levels. And finally, conclusions are 

summarized in Section 5.6. 

5.2 Constitutive Models 

5.2.1 Effective Configuration (Power Equivalence Hypothesis) 

Kachanov (1958) was the pioneer of the concept of continuum damage 

mechanics (CDM). He introduced a scalar quantity that is called continuity,  , and 

physically has been defined by Rabotnov (1969) as 

 
A
A

   (5.1) 

Here A  is the effective area (undamaged or intact area), and A  is the whole area, which 

is capable to carry the applied load. In 1961, Odqvist and Hult (1961) introduced another  
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variable,  , which defines the reduction of area due to micro-damages 

  
D

1
A A A

A A
  
     (5.2) 

where DA  is the area of micro-damages, and   is the damage density variable, which 

evolves from 0   for intact (undamaged) material to 1   for total rupture. In fact, 

complete rupture happens when c  , where c  is the critical damage density that is a 

material property (Abu Al-Rub and Voyiadjis, 2003). The relation between stresses in 

the undamaged material and damaged material is defined next (Chaboche, 2003) 

 
1

ij
ij








 (5.3) 

where ij  and ij
 
are the components of the effective Cauchy stress tensor in the 

nominal and effective (undamaged) configurations, respectively. Since, in generalization 

framework the second Piola-Kirchhoff (II-PK) stress measure is used; thereby, similar to 

recent equation, Eq. (5.3) can be rewritten as 

 
1

ij
ij

S
S





 (5.4) 

where ijS
 
and ijS

 
are the components of the II-PK stress tensor in the nominal and 

damaged configurations. In order to model the degradation in strength and stiffness 

regarding to the damage evolution, Cicekli et al. (2007) and Abu Al-Rub and Voyiadjis 

(2009) have concluded that Eq. (5.3) is more accurately defined as 

 
2(1 )

ij
ij








 (5.5) 
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And in the same manner, Eq. (5.5) will be converted to 

 
2(1 )

ij
ij

S
S





 (5.6) 

In this work, Eq. (5.6) is adopted, because ij
 
is the true effective stress which drives the 

non-linear behaviors (here: viscoelastic, viscoplastic, and viscodamage), and the 

constitutive equations in the subsequent sections are presented in terms of the effective 

(undamaged) stress components, ij . The evolution law for the damage density,  , will 

be discussed in Subsection 5.2.5. 

A transformation hypothesis is also required to relate the nominal strains, ijE , to 

the strains in the undamaged (effective) configuration, ijE . To achieve it, one can either 

adapt the strain equivalence hypothesis (i.e., the strains in nominal and effective 

configurations are equal) or the strain energy equivalence hypothesis (i.e., any form of 

strain energy in the nominal configuration is equal to the corresponding strain energy in 

the effective configuration) (Abu Al-Rub and Voyiadjis, 2003). Although, the strain 

energy equivalence hypothesis is intuitively more physically sound, it greatly 

complicates the constitutive models and their numerical implementation (Abu Al-Rub 

and Voyiadjis, 2003). Therefore, for the sake of simplicity and ease in the finite element 

implementation of these complex constitutive equations, the strain equivalence 

hypothesis is adopted. Hence, it is assumed that the nominal strain components, ijE , are 

equal to their counterparts in the effective configuration, ijE . 
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5.2.2 Multiplicative/Additive Decomposition of Lagrangian Strain 

The total distortion of a solid domain subjected to an applied stress can be 

decomposed into recoverable and irrecoverable constituents, where the amount of each 

is mainly affected by time, temperature, and loading rates. As explained in Chapter 3, in 

small strain concept, additive decomposition of total strain to viscoelastic (recoverable) 

and viscoplastic (irrecoverable) components is acceptable. But in this work, because the 

response of polymeric materials under finite distortion is being investigated, the 

viscoelastic and viscoplastic portions of strain and strain rates should be separated with 

respect to the requirements of large deformation concepts. Henceforth, the deformation 

gradient can be multiplicatively decomposed into viscoelastic, veF , and viscoplastic, 

vpF , components as was shown in Fig. 3.1 (Kröner, 1960; Lee and Liu, 1967), such that 

   
ve vp ve vp, where: det( ) 0 , det( ) 0 , det( ) 0ij ik kjF F F F F F     (5.7) 

Through using Eq. (5.7) and the definition of the Green-Lagrange (GL) strain, the 

decomposition of GL strain and strain rate is derived in Chapter 3. 

The key point for using large deformation concept in incremental procedure is 

that the deformation gradient tensor is supposed to be known in each time increment of 

the analysis (finite element softwares provide this tensor), and moreover it is constant 

during the applied load in that time increment. Also, in all iterations inside a time 

increment, the total rigid body rotation is assumed to be constant and equal to its value at 

the end of that increment. Converting the pure multiplicative decomposition of the 

deformation gradient to the additive-multiplicative decomposition approach of the GL 

strain and strain rate and their issues are fully explained in Chapter 3, and based on that 
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the procedures for extending the small strain constitutive models to its equivalent finite 

strain framework, are itemized as follows: 

1) The incremental Lagrangian strain tensor for the current time increment should be 

computed using Eq. (3.76) or (3.79). 

2) The total rigid body rotation, R , is calculated by Eqs. (3.68) to (3.70). 

3) Based on the modified viscoelastic model, the trial stress should be found (Eqs. 

(4.65) and (4.66)), and the yielding condition should be checked. If the trial stress 

state does not violate the yield condition, then no plasticity occurred and vpF I . 

4) If trial stress satisfies the yield condition, the plastic corrector should be activated. 

5) The strain rate, vpE , in the flow rule for viscoplastic in infinite strain models should 

be replaced by the rate of deformation tensor, vpD  (Eq. (3.80)). 

6) Utilizing the Eqs. (3.85) to (3.94), gives the plastic stretch tensor, vpU , according to 

the estimated trial stress. Then, the viscoplastic deformation gradient tensor and the 

viscoplastic strain rate can be computed correspondingly by: vp vpF RU  and

Tvp vp vp vpE F D F . 

7) For the elastic part, at first the total Lagrangian viscoelastic strain tensor should be 

calculated (see Chapter 3). Then by hiring Eqs. (3.100) and (3.102) the viscoelastic 

stretch tensor, veU and its rate, veU , will be found. 

8) The tangent stiffness modulus is then computed through Eq. (3.156), and 

subsequently the II-PK stress will be updated by Eq. (3.151). 
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9) Afterwards the computed incremental Lagrangian strain tensor in step 1, should be 

compared with Eq. (3.54) or Eq. (3.55) to check the convergence. If the 

convergence is not satisfied, then the procedure from step 4 should be repeated. 

5.2.3 Non-Linear Thermo-Viscoelastic Model 

In this study, the modified Schapery non-linear viscoelastic model that was 

derived in Chapter 4 is employed to numerically predict the viscoelastic response of the 

polymer (PMMA). In the one-dimensional case, the single integral viscoelastic model 

can be expressed in terms of the effective stress concept, as 

   
        2NVE,

0 0 1 0

d ,
, , d

d

t
tt t t t t t t

g S T S
E D g S T S g S T D

 
 

  


     (5.8) 

where 0D  is the instantaneous elastic compliance for undamaged material, D  is the 

transient compliance for the undamaged material, and 0g , 1g , and 2g  are non-linear 

parameters that are functions of the effective stress and temperature at any specific time,

 . Parameter 0g  is the non-linear instantaneous compliance that measures the reduction 

or increase in the instantaneous elastic compliance. The transient non-linear parameter 

1g  measures the non-linearity effect in the transient compliance, and the parameter 2g  

accounts for the loading rate effect on the creep response, as well. In the case of linear 

viscoelastic materials 0 1 2 1g g g   , such that the Eq. (5.8) reduces to the Boltzmann 

superposition integral. Also, in Eq. (5.8), t  is the reduced time that is given by 

 
0

dt
t

T s

t
a a

    (5.9) 
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where Ta  and sa  are the temperature and stress (or strain) time-shift factors, 

respectively. For numerical convenience, the Prony series are commonly used to 

represent the transient compliance D  as follows 

  
1

1 exp
t

N
t

n n
n

D D  


       (5.10) 

where N  is the number of Prony series terms, nD  is the thn  coefficient term of the 

Prony series associated with the thn  retardation time, 1 n . As proposed by Lai and 

Bakker (1996), the one-dimensional non-linear viscoelastic model in Eq. (5.8) can be 

generalized to the three-dimensional form by decomposing the viscoelastic response into 

deviatoric and volumetric portions. According to Chapter 4, by assuming that the 

Poisson’s ratio  is time- and temperature-independent, and using the Prony series for 

the transient compliance, Eq. (5.8) is split-up to deviatoric and volumetric strains, and 

also expressed in terms of the hereditary integral, as 
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
 (5.11) 
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where the superscript t  designates the increment of discretized time, and the variables 

dev
,ij nq  and vol

,ij nq
 
are the thn  term of deviatoric and volumetric hereditary integrals. These 

expressions were derived in Chapter 4, as well. The above equations are very useful for 

the numerical implementation of the non-linear viscoelastic model as will be shown in 

Section 5.3. It is noteworthy to mention that the difference between Eqs. (5.11) to (5.12) 

and those presented in Haj-Ali and Muliana (2004) and Huang et al. (2011b) is that they 

are expressed in the effective (undamaged) configuration, which allows one to easily 

couple viscoelasticity to damage evolution, and are also extended to finite deformations. 

Besides, the other difference comes from the nature and the GL strains and the II-PK 

stresses that provide tensor quantities for volumetric measures instead of a scalar value, 

unlike what appears in small deformation formula. 

5.2.4 Thermo-Viscoplastic Model 

In order to calculate the viscoplastic deformations in polymers, a Perzyna-type 

(Perzyna, 1966) viscoplastic constitutive model can be utilized, but modified here in 

terms of the effective stress tensor instead of the nominal stress tensor. This is argued as 

once the material is damaged, further loading can only affect the undamaged (effective) 

regions inside a body, such that the undamaged parts can flow plastically. Since large 

deformation theory and measures should be used, the viscoplastic rate of deformation,

vp
ijD , can be expressed using the following flow rule 

 vp vp
ij

ij

gD
S

 



  (5.13) 
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where vp  is the viscoplastic multiplier, and g  is the viscoplastic potential function. 

Physically, vp  is a positive scalar, which determines the magnitude of vp
ijD , whereas

ijg S 
 
determines the direction of vp

ijD . In this approach, as discussed in Chapter 3, 

unlike the other researchers that consider irrotational flow (Anand and Ames, 2006; 

Anand and Gurtin, 2003; Gurtin and Anand, 2005; Wagner, 1978); here, the viscoplastic 

deformation gradient contains the rigid body rotation (rotational flow). Therefore the 

vorticity tensor will not vanish. After calculating vp
ijD

 
in each time increment, using 

Eqs. (3.85) to (3.92); then, the viscoplastic deformation gradient and finally the strain 

rate tensors can be computed in a straightforward manner. 

Perzyna (1971) expressed the viscoplastic multiplier in terms of an overstress 

function and a viscosity parameter that relates the rate of viscoplastic deformation to the 

current stresses, such that vpγ  can be expressed as 

    vp vp N
T f     (5.14) 

where  is the Macauley bracket, 0N   is the viscoplastic rate sensitivity parameter, 

and vp( )T  is the viscoplastic viscosity parameter such that vp1 /   represents the 

viscoplasticity relaxation time according to the notion given by Perzyna. This viscosity 

parameter is temperature-dependent such that 

  vp vp vp vp
ref ref ref( ) , ( ) exp ( ) /T T T T T        (5.15) 
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in which vp
ref  is the viscosity parameter at a reference temperature refT  and   is a 

material parameter. In Eq. (5.14),   is the overstress function which is expressed in 

terms of the yield function f , and the following expression is assumed for function   

  
 

 0

0 0

0
y

f
f f f

S

  
      
 

 (5.16) 

where 0
yS
 
is a yield stress quantity used to normalize the overstress function and can also 

be assumed unity. In this study, a modified Drucker-Prager yield function ( f ) is used 

that can distinguish between the distinct behavior of polymers in compression and 

tension, and also is able to take into account the confining pressures. But, this modified 

Drucker-Prager yield function is expressed as a function of the effective (undamaged) 

stresses, ijS , as 

 vp
1 eff( ) 0

3
f I E      (5.17) 

where   is a material parameter designated to the material’s internal friction or 

entanglement. 1 kkI S  is the first invariant of the effective stress tensor, vp
eff( )E

 
is an 

isotropic hardening function associated with the cohesive characteristics of the material 

and depends on the equivalent or effective viscoplastic strain, vp
effE . The stress   is the 

deviatoric effective shear stress and is assumed to have the following form 

 2 3

3
2

1 1
1 1

2

J J
d d J

            
     

 (5.18) 
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in which dev dev
2

3

2 ij ijJ S S  and dev dev dev
3

9

2 ij jk kiJ S S S  are the second and third deviatoric 

stress invariants of the effective stresses ijS , respectively. The material parameter d  is 

the ratio of the yield stress in uniaxial tension to that in compression. Therefore, d  gives 

the distinction of polymer’s behavior in contraction and extension loading conditions, 

where 1d   implies that 2J  . The value of d  should have a range of 0.778 1d   

in order to ensure that the yield surface is convex. Applying a uniaxial compression 

stress, then 2 11J S   ; whereas under uniaxial tension 2 11/ /J d S d   . This 

indicates that at the same stress level, the material in tension yields earlier than in 

compression. Following the work of Lemaitre and Chaboche (1994), one can express the 

isotropic hardening function, vp
eff( )E , as an exponential function of the equivalent 

viscoplastic strain vp
effE , such that 

    vp vp vp
eff 0 1 2 eff( ) 1 expE E T           (5.19) 

where 0 , 1 , and 2  are material parameters; 0  defines the initial yield stress, 

0 1   determines the saturated yield stress level, and 2  is the strain hardening rate 

and shows how fast a material hardens. Because polymers viscoplastic deformation is 

generally complex; thus, a non-associated viscoplastic effect should be assumed. Hence, 

the viscoplastic potential function, g , in Eq. (5.13) is not equal to the yield function f . 

Thus, the direction of the viscoplastic strain increment is not normal to the yield surface, 

but is normal to the viscoplastic potential surface. This can be simply achieved by 

assuming a generalized Drucker-Prager-type viscoplastic potential function as 



138 
 

 13
g I
   (5.20) 

where the parameter   describes the dilation-contraction response of the material. Then, 

the effective viscoplastic strain rate vp
effE

 
in Eq. (5.19) can be expressed as 

  
2

vp 1 vp vp 1 vp vp vp vp vp vp
eff

0.5 3
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 


    
 

    (5.21) 

and from Eq. (5.20), one can easily write 
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 (5.23) 

According to Wang et al. (1997), one can define a consistency condition for rate-

dependent plasticity (viscoplasticity) similar to the classical rate-independent plasticity 

theory such that a dynamic (rate-dependent) yield surface,  , is expressed from Eqs. 

(5.14), (5.16), and (5.17) as 

 

1
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vp 0
1 eff vp

( ) 0
3

N

yI E S  
            


 (5.24) 

The Kuhn-Tucker loading-unloading conditions for the dynamic yield surface   are 

 vp vp0 0 , 0 0           (5.25) 
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One of the main points in the non-linear incremental computation scheme is that the 

system of equation of the constitutive models should arrive at a converged stress state at 

the end of each analysis time increment. For such guarantee, the idea of consistent 

tangent stiffness is the key role; therefore, in order to find the proper tangent stiffness 

tensor for the presented models, the following derivations for the viscoplastic part should 

be hired. One may recall that the compliance tensor for the viscoelastic part is derived 

and explained in Chapters 3 and 4, and Appendix B, C, and D. Now, to find the 

expression for viscoplastic tangent stiffness, one must discern that the compliance tensor 

is a combination of the compliance of both viscoelastic and viscoplastic models. Thus, 

regarding the definition of residual strain in Chapter 4,  T1

2
t
ij ik kjR F F I    , and using 

FEM 1F F F    and ve vp ve vpF F F RU U  ; the compliance tensor can be found 

through deriving the residual strain with respect to the incremental II-PK stress, as 

 

T

T1

2

t
ij mjim

mj imt t t
kl kl kl

R FF F F
S S S

                  
 (5.26) 

where 

1 1vp ve
1 1FEM ve vp Tij pr rq

ip rq pr qjt t t
kl kl kl

F U U
F U U R

S S S

 
 

   
  

      

Now, through using the definition of the viscoelastic and viscoplasic stretch, one may 

find the compliance tensor for the combination of both constitutive models as 
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   

1T FEM ,vp

1 1 1,vol ,dev ve

symm

2 2

t t
ij yrt

iy yp pyt t
kl kl

t t
pskl pskl xjsx sx

R
F C U t

S S

K I E G I E F



  

  
    


    

 



 (5.27) 

where 

2
Tvp

0
yield

Nt
yr t t

ya brt
kl ab kl ab kl

f N g f gt R R
S S f S S S S

     
             


 

Furthermore, the derivations of these equations are explained in detail in Appendix D. 

5.2.5 Thermo-Viscodamage Model 

Time-, rate-, and temperature-independent evolution equations for evaluating the 

damage variable,  , are not proper to predict the damage nucleation and growth in 

polymeric materials. In general, the damage evolution,  , can be explained as a function 

of the total stress (in effective state), ijS , hydrostatic stress, vol
ijS , strain, ijE , strain rate,

ijE , temperature, T , and damage history,  , schematically as 

  vol( ) , ( ) , ( ) , ( ) , ( ) , ( )ij ij ij ijF S t S t E t E t T t t    (5.28) 

The first time-dependent (creep) damage law, which was proposed by Kachanov (1958) 

and later modified by Rabotnov (1969), has the following form 

 32
1 (1 ) CCC      (5.29) 

Here ( 1,2,3)i iC   are material constants. However, for other types of loading conditions, 

the damage evolution should also depend on strain. Belloniet et al. (1979) proposed the 
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following creep damage law, which was later slightly modified by Cozzarelli (1981) and 

Lee (1986), in which 1C  to 4C  are material constants, and t  is time 

 32 4
1

CC CC t    (5.30) 

Schapery (1990) used his theory of viscoelastic fracture mechanics (Schapery, 1975) 

along with the elastic-viscoelastic correspondence principle and continuum damage 

mechanics to model the growth of damage in a viscoelastic domain. He also proposed 

the following power-law evolution equation for a damage parameter, S , as 

 
RWS

S


 

   
  (5.31) 

  is a material constant, and RW  is the pseudo elastic strain energy density defined as 

    2

0

1 1 d
, d

2 d

tR R R R t
RW E E

E
     


    (5.32) 

with R  is the pseudo strain, ( )E t  is the relaxation modulus in uniaxial loading, RE  is a 

reference modulus (e.g. 1RE  ), and t  is the reduced time as defined in Eq. (5.9). But, 

unlike the current damage variable,  , there is no clear physical meaning for the 

damage variable S  in Schapery’s model. Moreover, there is no defined relation between 

the damaged relaxation modulus E  and S . Voyiadjis et al. (2003, 2004) and Abu Al-

Rub and Voyiadjis (2006a) have proposed a viscodamage evolution law for metallic 

materials 

 
 

1

m
Y

K



   (5.33) 
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where / 2ij ijY    is the damage driving force and interpreted as the energy release rate, 

m  is a material constant, and ( )K   is a damage isotropic hardening function that 

incorporates the damage history effect to the model. Motivated and guided by the above 

damage evolution laws, Darabi et al. (2011) have proposed the viscodamage evolution 

law for multiaxial state of stress, as 

    2vd
eff

0

1 exp ( )
q

Y kE G T
Y

     (5.34) 

where vd vd
0 ( )G T    with vd

0  is the damage viscousity parameter evaluated at a 

reference temperature refT
 

and  ref ref( ) exp ( ) /G T T T T  ;  , k , and q  are 

material constants; eff

2

3 ij ijE E E
 
is the effective or equivalent total strain; and 0Y  is 

the damage thereshold that specifies at which effective stress level damage initiates; and

1 /3Y I 
 
is the damage driving force where   is given in Eq. (5.18). This form 

for Y  allows one to incorporate the difference in damage behavior under contraction and 

extension loading conditions (or compression and tension under uniaxial loading), and 

also under confining pressures. Besides, note that effE  includes both viscoelastic and 

viscoplastic quantity of strains, which allows simplicit time, rate, and temperature to be 

coupled. This viscodamage evolution law has been successfully used by Abu Al-Rub 

and Tehrani (2011) and Tehrani and Abu Al-Rub (2011) for modeling polymers and 

polymer composites. Eq. (5.34) is used in this work for modeling damage evolution. To 

make the damage model compatible with viscoelastic and viscoplastic formulation in the 
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framework of large strain measures (as discussed in previous chapters), the role of 

engineering strain should be replaced by Lagrangian strain measure. 

For completeness, a general thermodynamic framework for deriving the 

presented coupled viscoelastic-viscoplastic-viscodamage constitutive model is outlined 

in Appendix E. In the following sections, numerical algorithms for implementing the 

presented thermo-mechanical viscoelastic, viscoplastic, and viscodamage evolution 

equations are explained in detail and the associated material constants will be identified 

based on available experimental data. 

5.3 Finite Element Implementation 

In this section, numerical algorithms for applying the presented unified thermo-

mechanical evolution equations in the finite deformation framework are discussed. 

Using the effective stress concept in the undamaged configuration greatly simplifies the 

numerical implementation of the proposed constitutive models. One can first update the 

effective II-PK stress, ijS , based on the non-linear viscoelasticity and viscoplasticity 

equations, which are expressed in the effective (undamaged) state. Then the damage 

density based on Eq. (5.34), and finally the updated nominal stresses can be computed 

(Abu Al-Rub et al., 2010). Given the deformation gradients at the previous, t t
ijF  , and 

current time, t
ijF , the incremental GL strain can be computed by Eq. (3.79) or 

 T 1
t t t t t t t tE F E E F 

     . Using Eq. (3.46), the total GL strain will be 

   T1
,

2t t t t tE C I C F F    (5.35) 
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Afterwards, the next important task is determining the value of the incremental 

volumetric and deviatoric quantities of the GL strain tensor, that are presented as 

  
2 2,vol 1 ,dev ,vol3 31

1 ,
2

t t t t
ij t t t ij ij t ij ijE J J I E J E E




              
 (5.36) 

Here, det( )t
t ijJ F . In the next step, the deviatoric and volumetric increments of the trial 

stresses to initiate the coupled viscoelastic and viscoplastic models, are found as follows 

  
NP

T,dev,trial ,dev ,dev ,dev ,trial ,dev
1 ,,trial

1

1 1
exp 1

2
t t t t t t t t t t
ij ik kl lj n n ij nt

n
S F E F g J q

J
   



 
        



 
(5.37) 

  
NP

T,vol,trial ,vol ,vol ,vol ,trial ,vol
1 ,,trial

1

1 1
exp 1

3
t t t t t t t t t t
ij ik kl lj n n ij nt

n
S F E F g B q

B
   



 
        


 

 (5.38) 

where 

 0 0 1 2
1

1 exp( )1
1

2

tN
t t t t n

n t
n n

J g J g g J  
 

    
      

   

 0 0 1 2
1

1 exp( )1
1

3

tN
t t t t n

n t
n n

B g B g g B  
 

    
      

   

But the non-linear viscoelastic parameters (i.e. 0 1 2, ,g g g ) are assumed to be functions 

of the last converged effective stresses. Therefore, if enhanced quantities are required for 

,dev,trialt
ijS  and ,vol,trialt

ijS
 
to reduce the number of iterations in material level, or to 

increase the time increment, one can hire Eq. (4.65) and (4.66). Also to find the total 

undamaged II-PK stress, one can compute it as 

 

   1 T 1 T

,vol,trial ,dev,trial

t t t t t t t t t t t t
t t

t t t
ij ij

S J F F J F S F

S S S


      

   

   
 (5.39) 
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The undamaged volumetric and deviatoric portions of II-PK stress can be calculated as
 

 vol 1 dev vol1
( : ) ,

3
S S C C S S S    (5.40) 

Then, the undamaged hydrostatic and deviatoric components of viscoelastic strain 

increments can be expressed from Eqs. (4.56) and (4.57) as 

 
NP

T,dev ,dev ,dev ,dev
1 1 ,

1

,dev
2 1 1

1

1
exp( )

2

1 exp( ) 1 exp( )1

2

t t t t t t t t t t t t t t t
ij ik kl kl n n kl n

n

t t tNP
t t t t t t t tn n

n kl ljt t t
n n n

E F J S J S J g g q

g J g g S F

 

   
   

    




  





      

         
             



 1t 

   (5.41) 

 
NP

T,vol ,vol ,vol ,vol
1 1 ,

1

,vol
2 1 1

1

1
exp( )

3

1 exp( ) 1 exp( )1

3

t t t t t t t t t t t t t t t
ij ik ij ij n n kl n

n

t t tNP
t t t t t t t tn n

n kl ljt t t
n n n

E F B S B S B g g q

g B g g S F

 

   
   

    




  





      

         
             



 1t 

 (5.42) 

In the recent equations and Eqs. (5.37) and (5.38), the variables ,dev
,

t t
ij nq   and ,vol

,
t t
ij nq   are 

the deviatoric and volumetric hereditary integrals for thn  term of Prony series at the 

previous time step, respectively. After stress state convergence, the hereditary integrals 

should be updated and stored [see Eqs. (4.50) and (4.51)] at the end of every converged 

time increment, which will be used for the next time increment, and their expressions are 

 ,dev ,dev ,dev ,dev
, , 2 2

1 exp( )
exp( )

t
t t t t t t t t t t n
ij n n ij n ij ij t

n

q q g S g S   
 

      
       

 (5.43) 

 ,vol ,vol ,vol ,vol
, , 2 2

1 exp( )
exp( )

t
t t t t t t t t t t n
ij n n ij n ij ij t

n

q q g S g S   
 

      
       

 (5.44) 

Since the total rigid body rotation is lumped to the plastic part, then: ve ve
ij ijF U  



146 
 

        vol vol T vol dev dev T dev,t t t t t t t t t t t t t t t tE E F E F E E F E F            (5.45) 

The deviatoric viscoelastic stretch tensor can be computed simply as (like Eq. (3.101)) 

 dev dev2t tU I E   (5.46) 

Once the total GL strain is computed through  ve dev vol dev dev
t t t t tE U E U E  , then using 

Eq. (3.101), the viscoelastic deformation gradient is calculated as ve ve2F U I E   . 

Or, similar to Eq. (5.46), one can write: vol vol2t tU I E  . Then, viscoelastic 

deformation gradient as: ve ve,dev ve,volF U U . 

Rigid body rotation has not been decomposed to elastic and plastic portions, and 

both have been lumped to one rotation tensor that is considered as the plastic rotation 

tensor. The rotation can be determined exactly through the deformation gradient tensor, 

not through incremental integration, and is presented in the next equation 

 
1T 2 T 1 2, ,B FF V V FF R V F B F      (5.47) 

1
2B 

 
is evaluated as next, where i  and v  are the eigenvalues and eigenvectors tensor. 

    

1 2
1

11 1T T 1 2 T22 2
2

1 2
3

0 0

0 0

0 0

B v v v v v v


  




  



 
     
  

 (5.48) 

At this point, all of the calculations related to viscoelasticity are completed; and now, 

with the purpose of computing the viscoplastic portion of deformation, through utilizing 

Eq. (5.13) to (5.24), one can systematically track the following procedures, that explains 

the computation of viscoplastic rate of deformation. 
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vp
1 eff

vp vp vp vp
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( )
3,
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ij
ij y

I Egt D
S S

 
 

  
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
 (5.49) 

where 
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1 1 1
1 1
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d d J
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2 3 2
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1 1 1 1 1 1
1 1

2 32
ij

ij ij ij ij

JJ Jg J J
S d S d S S JJ

 
                                   

  

Therefore, by taking into account the calculated rotation in Eq. (5.47), the value of time 

increment, and the viscoplastic rate of deformation from Eqs. (5.49), then the 

viscoplastic stretch tensor, vp
tU , will be computed through a successive multiplicative 

mapping update as next 

  vp vp T vpexpt t t t tU U R D R t   (5.50) 

Afterwards, one can find the viscoplastic deformation gradient as 

 vp, vp,t t t
ij ik kjF R U  (5.51) 

By substituting Eqs. (5.13) and (5.21) into Eq. (3.119), the equivalent viscoplastic strain 

can be written as 

 vp, vp, vp,
eff eff eff

t t t tE E E    (5.52) 

where 

2

vp, vp, 1 vp, vp, vp, vp,
eff

0.5 3
, 1 2

1 3
t t t t t t

ki lj ki ljt t
ij ij

g gE A F F F F A
S S





      

               
 

A trial dynamic yield surface function, trial , can be defined from Eq. (5.24) as 
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1
vp,

trial trial vp, 0
1 eff vp

( )
t t N

t t
yI E S

t
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
  

        
 (5.53) 

In order to calculate vp,
eff

tE , the magnitude of viscoplastic stretch can be found iteratively 

using the Newton-Raphson scheme. When vp,t  is obtained, vp,t
ijF can be calculated 

from Eq. (5.49) to (5.51). In the Newton-Raphson method, the differential of   with 

respect to vp
 
is needed, which can be expressed as  

 

1
0vp vp

eff
vp vp vp vp vp

eff

N
ySE

E N t
  
  

   
          

 (5.54) 

Therefore, at the th(k+1)  iteration, the viscoplastic multiplier is then calculated by 

    
1k

k+1 kvp, vp, k
vp,

t t
t

 





  
         

 (5.55) 

Then, substituting the converged vp,t  into Eq. (5.49) yields a new vp,t
ijF  which then 

can be used in calculating the viscoplastic strains vp,t
ijE  using Eq. (5.35). The above 

recursive-iterative algorithm with the Newton-Raphson method can be employed to 

obtain the current effective stresses and the updated values of the viscoelastic and 

viscoplastic strains by minimizing the residual strain increments, t
ij , which by 

following the nature of Lagrangian strain (Eq. (3.54) and (3.55)), can be defined as 

    TT 1 1vp ve, vp ve vp, vp ve vpt t t t
ij ij ij ijF E F F E F F F E          

 (5.56) 

The stress increment at the th(k+1)  iteration can be calculated by 
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      
1k

k+1 k k
t
ijt t t

ij ij ijt
kl

S S
S


  
          

 (5.57) 

The differential of t
ij

 
gives the consistent tangent compliance, which is necessary only 

for speeding up the convergence of the solution and can be derived as 

    
ve , vp ,TT 1 1vp vp ve vp ve vp

t t t
ij ij ij

kl kl kl

E E
F F F F F F

S S S
    

  
    

 (5.58) 

where ve
ij klE S 

 
and vp

ij klE S 
 
are the non-linear viscoelastic and viscoplastic 

tangent compliances, respectively. However, the complete derivations of the compliance 

tensors are expressed in Appendices C and D. 

Damage can also be implemented by using the effective stress concept. As 

mentioned earlier, once the updated effective stress increment is calculated from Eq. 

(5.57), the total updated effective stress is calculated from Eq. (5.39), and the final 

viscoelastic and viscoplastic strains are calculated from Eqs. (5.35). Then one can use 

Eq. (5.34) to compute the rate of the damage density, as 

 t t t t t      (5.59) 

Then, the final nominal stresses, ijS , can be calculated using Eq. (5.6). Since most of the 

commercial finite element software work with the Cauchy stress measure; therefore, the 

nominal II-PK stress should be converted to Cauchy stress as 

 
T1t t t t

ij ik kl ljt F S F
J

   (5.60) 
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The effective stress concept is numerically attractive, since it allows the calculations of 

the effective stresses to be decoupled from damage. The above formulated numerical 

procedures have been implemented in the user material subroutine (UMAT) of the well-

known finite element code ABAQUS, as part of this research. 

5.4 Application of the Constitutive Models to Polymer 

In this section, af first the main steps for identifing and determining the material 

parameters associated with the presented constitutive model will be summarized. 

Subsequently, the model is used for predicting the viscoelastic, viscoplastic, and damage 

response of PMMA polymer under different loading conditions and temperatures. 

The procedure for determining the combined viscoelastic and viscoplastic model 

parameters in a systematic way by using the single/repeated creep-recovery test has been 

thoroughly discussed by Huang et al. (2011a). It is important to mention that it is 

practically impossible to determine the instantaneous compliance, 0D , from the creep or 

creep-recovery tests, because the instantaneous strain is very difficult to measure, and 

usually the average of 0D  is used. Hence, 0D  is determined from the initial response 

using the monotonic constant strain rate test at the reference temperature. Viscoelastic 

parameters are separated into two categories. The first category of parameters is the 

Prony series coefficients, nD  and n  (Eq. (5.10)) associated with the linear viscoelastic 

response for undamaged material. The second category contains the non-linear 

viscoelastic parameters, 0g , 1g , and 2g , and the stress time-shift factor, a . The first 

step to identify these parameters is separating the viscoelastic and viscoplastic strains in 
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coefficients nD  and n  in Eq. (5.10) from a linear viscoelastic response at a low stress 

level. Since the viscoplastic strain during the relaxation process is constant, which is 

equal to its value at the end of the loading step (or equivalently at the end of the 

unloading step), nD  and n  are determined first by analyzing the recovery strain. The 

analysis employs the strain r1  shown in Fig. 5.1, which is the recovered strain 

between at  and bt  in order to obtain nD  and n  at the lowest stress level without 

damage (i.e., one can assume 0 1 2 1sg g g a    ). The expression for r1( )t  can be 

derived from Eqs. (5.61), (5.62), and (5.10), such that 

r1 c r

0
1 1

( ) ( ) ( )

[1 exp( )] exp[ ( )][1 exp( )]

a

N N

n n a n n a n
n n

t t t

S D D t D t t t

  

  
 

  

 
         

 
 

 (5.63) 

which can be simplified to 

 

r1 c r

0
1

( ) ( ) ( )

1 exp( ) exp[ ( )] exp[ (2 )]

a

N

n n a n a n a
n

t t t

S D D t t t t t

  

  


  

 
          

 


 (5.64) 

Then, nD  and n  are determined by minimizing the error between the measurements of  

r1( )t and Eq. (5.63). The non-linear viscoelastic expressions in Eqs. (5.61) and (5.62) 

with the identified nD  and n  can then be used to analyze the experimental data at 

higher stress levels to determine the non-linear parameters. At higher stress levels, the 

next expression for the recovered strain r3( )t  from at t  to bt t  (Fig. 5.1) can be 

derived from Eq. (5.62) and then used to determine the non-linear parameter 2g , as 



153 
 

 

r3 r r
1

2 1
1

( ) ( ) ( )

exp( )[1 exp( )][exp( ) exp( )]
N

a
n n a n n n

n s

t t t
tg S D t t t
a

  

   


  

      
 (5.65) 

Once the non-linear parameter 2g  is obtained, the expression for r2( )t , which can be 

derived from Eqs. (5.61) and (5.62), is fitted to the experimental data from at t  to 

1t t  (Fig. 5.1) in order to get the non-linear parameters 1g  and sa , such that 

 
 

r2 c r

0 0 2 1
1

( ) ( ) ( )

[1 exp( )] exp ( )

a

N
a

n n n a
n s

t t t

tS g D g D g t t
a

  

 


  

             
   


 (5.66) 

Following the above procedure, for PMMA polymer, the Prony series and non-linear 

viscoelastic parameters can be extracted from the experimental data presented by Lai 

and Bakker (1995) and Hasan and Boyce (1995) at different stresses and temperatures. 

The trend of the identified viscoelastic parameters are illustrated in Fig. 5.2. Moreover, 

Table 5.1 presents the calibrated viscoelastic model parameters. Here, the non-linear 

parameters are functions of the effective stress, Ŝ . 

 

 

Fig. 5.2. Variation of non-linear viscoelastic parameters versus stress levels at 296 K. 
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Table 5.1: Viscoelastic material parameters for PMMA polymer. 

Linear viscoelastic model parameters 
N 1 2 3 4 5 6 7 8 9 

n (s-1) 1.0 0.1 0.01 310  410  510  610  710  810  

nD  (MPa-1) 610  10.34 14.66 16.84 19.58 27.28 41.06 61.23 80.50 160.23

0D  (MPa-1) 200 610  
Non-linear viscoelastic parameters 

 0 00 exp 7.037 ( )g T T T 
           

 0 0exp 23.24 ( )s T T Ta     

 0 01

ˆ1.0 20
exp 0.459( )

ˆ ˆ0.0175( 32.11) 20
g

S
T T T

S S

     
   

 

 0 02

ˆ1.0 20
exp 0.459( )

ˆ ˆ0.0467( 1.093) 20
g

S
T T T

S S

     
   

 

Temperature time-shift factor 
( 296 K) ( 323 K)1.0 ,  0.5oT TT Ta a    

 

Once the linear and non-linear viscoelasticity model parameters are obtained 

from the separated viscoelastic strain, one can subtract the viscoelastic strain from the 

total strain measurements to obtain the viscoplastic strain. Viscoplastic model 

parameters can then be determined from the extracted viscoplastic response. From the 

dynamic yield surface in Eq. (5.24), one can obtain and use the next expression in case 

of uniaxial compression test, such that 
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   
vp,

vp vp 0
0 1 2 eff(1 ) 1 exp

3

Nt

yS
t

                      
 (5.67) 

where S  is the applied uniaxial compressive stress in the absence of damage. The 

increment of plastic multiplier, vp,t , can be obtained from the separated vp,t , 

through using the experimental data in case of uniaxial compression by considering the 

expression derived from Eq. (5.13), as 

 
 

vp, vp,
vp,

1 3

t t
t E E

g S



 

  
  

 (5.68) 

The quantity of viscoplastic parameters: vp , N , 0 , 1 , and 2 , can be obtained 

numerically by minimizing the error between the measurements and Eq. (5.67). Using 

the experimental data presented by Lai and Bakker (1995) and Hasan and Boyce (1995), 

the viscoplastic material constants are obtained. The loading times in these tests were 

rather short; hence, one can assume that the material is not damaged during these 

experiments, or at least the introduced damage is not signifcant at lower stress levels. 

The identified viscoplastic material parameters are listed in Table 5.2. 

 

Table 5.2: Viscoplastic material parameters for PMMA polymer. 

    vp
ref (s-1) N  d  0

(MPa) 
1

(MPa) 
2    refT  (K) 

o
yS

(MPa) 

0.3 0.15 42 10  1.3 0.85 80 75 30 3.78 296 1.0 
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The viscodamage model has four distinct material parameters: (i) vd
0  is the 

reference damage viscousity parameter, (ii) 0Y  is the reference damage force obtained at 

a reference stress from a single creep test, (iii) q  shows the dependency of the damage 

model on stress, and (iv) k  is a constant showing how much the evolution of damage 

density depends on the total effective strain. To find the viscodamage parameters, one 

can select 0Y  as the smallest stress level at which damage initiates. Then, one can 

assume that the value of 2
0(1 )Y Y  is almos constant in the stress level that damage 

initiates; thus, the value of these terms: vd 2
0 0(1 )

q
Y Y     is constant, and variable q  

can be set as: 0q   at the first try. Then proper values for the whole of the recent 

expression and parameter k  can be found by using just one creep-tertiary curve at one 

certain stress level (which can be the curve with the lowest stress level). Afterwards, by 

repeating the same procedure using another stress level data for the tertiary-creep test, 

with the obtained parameter k , the new value for the whole term of 

vd 2
0 0(1 )

q
Y Y    can be found. In the next step, by dividing the value of the 

expression for both stress levels, a constant value for vd
0  and then q  can be computed. 

In Table 5.3, the viscodamage material parameters are listed. 

 

Table 5.3: Viscodamage material parameters for the PMMA polymer. 

vd
ref (s-1) 0Y (MPa) q k  

2×10-6 85 15 1.8 

 



157 
 

Now, similar to Eq. (5.34), one can easily write the damage viscousity parameter as 

 vd vd 6
ref

296
( ) 2.0 10 exp 69.175

296

TG T               
 (5.69) 

In Section 5.5, the comparison of creep and recovery results and creep-damage 

predictions based on experimental data, are illustrated. 

5.5 Model Predictions 

In order to demonstrate the capabilities and predictions of all three unified 

constitutive models that are generalized to large deformation framework, the numerical 

analyses have been conducted and shown in the small and large strain range. The 

components of models in the creep tests (secondary and tertiary) have been decomposed 

to VE, VE+VP, and VE+VP+VD which stand for viscoelastic, viscoelastic–viscoplastic, 

and viscoelastic–viscoplastic–viscodamage, respectively, in the following figures. The 

comparison of experimental values and just viscoelastic model predictions for both creep 

and recovery at lower stress levels (15-40 MPa) at room temperature (Lai and Bakker 

(1995)), using the numerical model described in Eqs. (5.36) to (5.46), are plotted in Fig. 

5.3 (a) and (b). 

 



158 
 

 
              (a) Creep test (30 minutes)                        (b) Recovery test (60 minutes) 

Fig. 5.3. Predictions for PMMA behavior under tensile loading in lower stress level 
ranges (15-40 MPa). 
 

It should be noted that, the non-linear viscoelastic functions in Table 5.1 were calibrated 

by using this range of data (25 to 35 MPa), and then those functions are hired to predict 

the creep behavior in other stress ranges. Also, it should be clarified that in order to find 

the viscoelastic material parameters of PMMA, the data presented by Lai and Bakker 

(1995) is used. This data set is in small deformation range, and is proper for calibrating 

the Prony series terms and their corresponding relaxation time variables. After finding 

the viscoelastic parameters, to calibrate the viscoplastic and viscodamage models, since 

they are in large strain range (more than 5%), the data presented by Hasan and Boyce 

(1995) is used (Figs. 5.4 - 5.5, and Figs. 5.7 - 5.8). 

The results of creep-secondary for higher stresses (Hasan and Boyce (1995)), 

which are in the range of 42 to 74 MPa at 296 K have been illustrated in Figs. 5.4 (a) to 

(d). The predictions for 42 and 53 MPa do not show any plasticity, and as can be seen, 

the viscoelastic and viscoplastic and also viscodamage simulations exactly coincide. In 
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Fig. 5.5. Experimental data versus predictions for all stress levels (296 K = 23 oC). 
 

In addition, in Fig. 5.6 (a) and (b) the changes of Damage Density Φ, Eq. (5.34), versus 

time and strain are depicted only for higher stress levels (85, 94, 99, and 101 MPa), since 

as can be recognized from Fig. 5.4 (a) to (d) there are no effects of damage initiation or 

evolution in these stress control tests at lower stress levels. 

The behavior of PMMA polymer at a higher temperature (323 K) is shown here. 

Fig. (5.7) (a) and (b) present that the behavior at lower stresses (22 and 32 MPa) is 

governed by just viscoelasticity. Fig. 5.7 (c) and (d) depicts the behavior of PMMA at 42 

and 52 MPa, and show that plastic phenomenon initiated around 40 MPa. 
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Fig. 5.6. Damage density versus: (a) strain, and (b) time, for creep tests in the range of 
85 to 101 MPa, at room temperature (296 K). 
 

Also, as can be observed there is no damage in these stress levels. One can compare the 

initiation of irrecoverable behavior at both temperatures. In Fig. 5.7 (e) to (h), like the 

simulations at room temperature the models differences in prediction are easily 

identifiable. 

The temperature variables for transforming the viscoelastic material parameters 

from room temperature (296 K) to 323 K, in Table 5.1, is achieved by calibrating the 

model response with the experimental data sets in 22 and 32 MPa, at 323 K. Moreover, 

the temperature factor in the exponential expression in the viscoplastic model (the 

Arrhenious temperature form) is obtained based on calibrating the viscoplastic model 

with just experimental data in 42 MPa at 323 K. Also, in order to find the temperature 

variable for viscodamage viscous parameters, this parameter is calibrated with the data 

in 66 MPa stress level at 323 K. These calibrated parameters are used to validate the 

models in other stress levels. 

(a) (b)
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As seen, although the model predictions differ slightly from experimental data sets, they 

are in acceptable ranges. Fig. 5.8 presents the predictions versus the experimental data of 

all stress levels in one view. 

 

 

Fig. 5.8. Experimental data versus predictions for all stress levels (323 K = 50 oC). 
 

The results of predictions for higher stress levels at 323 K show that the temperature 

parameters in the unified models were well-calibrated in such a way that the results of 

numerical simulation are also in good agreement with the experimental data in this 

temperature level. Moreover, the variations of Damage Density (Φ) versus ture strain 

and time for higher stress levels (63, 66, 69.5, and 71.5 MPa) at 323 K are illustrated in 

Fig. 5.9 (a) and (b). In practice, by setting the temperature parameter in the related 

formula (Arrhenious exponential forms) for all material model parameters, one can 

predict the behavior of PMMA in other temperatures and stresses. 
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Fig. 5.9. Damage Density versus: (a) strain and (b) time for creep tests in the range of 63 
to 71.5 MPa at 323 K. 
 

To study the capabilities of the calibrated models for stresses higher than the 

available data (more than 101 MPa at 296 K, and more than 71.5 MPa at 323 K), in Fig. 

5.10 (a) and (b), forecasting the creep tertiary response of PMMA, are displayed. It is a 

virtual experiment performed to find the stress level (in stress control test) at which 

rupture will occur. 

 

 

Fig. 5.10. Forecasting the behavior of PMMA under high stress levels for finding the 
stress where rupture will occur: (a) 296 K, and (b) 323 K. 

 

(a) (b)
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The simulations show that the failure stress occurs around 120 MPa at room temperature 

and 75 MPa at the other temperature level,which is compatible with the experiments 

mentioned by Kondo et al. (1992) and in ASTM D 695. 

Additionally, after setting and calibrating the required material parameters for all 

of the numerical models by using the creep and recovery tests (mentioned at the 

beginning of this section), several simulations are conducted to check and compare the 

calibrated models with stress-strain responses of PMMA at different strain rates and 

temperatures. Thus, in Fig. 5.11 (a) and (b), the comparison between numerical 

simulations and the experiments for stress-strain tests (displacement control), for three 

different strain rates at both temperature levels, have been presented. The required 

material parameters for these simulations come from the calibrated parameters 

(presented in Fig. 5.4 and 5.7) for creep-secondary and -tertiary (stress control) tests. 

 

    

Fig. 5.11. Comparison between experimental data and calibrated numerical models for 
displacement control tests, at three different strain rates: (a) 296 K, and (b) 323 K. 
 

(a) (b)
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Fig. 5.12 (a) and (b) display how damage density changes versus true strain at different 

strain rates at both temperatures in the simulations illustrated in Fig. 5.11 (a) and (b). It 

is obvious that the increase of damage density accelerates at higher temperature. 

Moreover, forecasting the behavior of PMMA at the other strain rates, from low to high 

rates, at both temperatures are displayed in Fig. 5.13 (a) and (b). It has been simulated to 

show how PMMA acts while subjected to a range of strain rates loading. 

 

       

Fig. 5.12. Damage density versus strain, at three strain rates: (a) 296 K, and (b) 323 K. 

 

 

Fig. 5.13. Forecasting the stress-strain behavior of PMMA, in low and high strain rates 

(nine different strain rates): (a) at 296 K, and (b) at 323 K. 

(a) (b)

(a) (b)
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5.6 Summary 

This chapter contains the generalization of unified constitutive models from 

small strain range to large deformation, and then applying a temperature, rate, and time-

dependent continuum damage model (viscodamage) with the coupling of temperature-

dependent viscoelastic, viscoplastic, and viscodamage models for accurately predicting 

the non-linear behavior of PMMA polymer. Computational algorithms are presented for 

numerically integrating and implementing the proposed constitutive models using finite 

element methods via UMAT in ABAQUS (2008). 

Based on creep-secondary and -tertiary tests conducted over a stress range (42 to 

101 MPa) at room temperature (296 K) and another stress range (22 to 71.5 MPa) at 323 

K (50 C), it is observed that the PMMA polymer exhibits non-linear viscoelastic-

viscoplastic behavior. Also, it has been found that the behavior of this material around 

52 MPa at 296 K and 38 MPa at 323 K becomes a combination of non-linear viscoelastic 

and viscoplastic up to about 80 MPa (296 K) and 60 MPa (323 K). As demonstrated, 

after 80 MPa (296 K) and 60 MPa (323 K) the damage behavior becomes important, in 

such a manner that in 85 MPa (296 K) and 63 MPa (323 K) the tertiary part of creep 

behavior is obvious. 

The predictions of the developed models are in good agreement with the 

experimental sets in both creep-secondary and -tertiary responses of PMMA polymer in 

high stress levels at both temperatures. The creep-tertiary response directly relates to the 

effect of damage phenomenon, which is the corrspondece of FLV (free local volumes) in 

polymers. In addition, the potential of the proposed calibrated models for forecasting the 
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failure stress of PMMA, which occurs around 120 MPa at room temperature and 80 MPa 

at 50 C, is demonstrated. Also, the results of the predictions of stress versus strain 

(displacement control test) employing the combined viscoelastic, viscoplastic, and 

viscodamage models demonstrate acceptable predictions for all stress-strain diagrams in 

different strain rates and at both temperatures. Using the material parameters found from 

creep responses, shows the validation of the calibrated model. Although the peak points 

of the numerical predictions have a shift in comparison to experimental data, they are in 

acceptable ranges. 

The current time-integration scheme is also shown to be computationally 

efficient and accurate. The proposed algorithm is the extension of small strain models to 

large deformation context, and is designed to be compatible with finite elements (FE) 

framework. The FE simulations show the ability of the proposed combination methods 

for effectively predicting the time dependent responses of PMMA polymers, and also 

can be applied to other polymer and polymer composite materials. 
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CHAPTER VI 
 

GENERATING REPRESENTATIVE VOLUME ELEMENTS (RVE) 

FOR COMPLEX MICROSTRUCTURES 
 

6.1 Introduction 

Considerable efforts have been dedicated to employ materials with lightweight 

structures, which are highly desirable to be used to increase energy efficiencies in 

different commercial and industrial divisions (Corum et al., 2001; Dahl et al., 2005; 

Jacob et al., 2006). The thermo-mechanical properties of randomly dispersed particles or 

fiber reinforced composites (PRC or FRC) are of paramount importance for their special 

applications in lightweight structures (Pan et al., 2008). Mass production of random 

particle or fiber based composites with different volume fractions, establishes PRCs or 

FRCs as the alternating candidate materials for developing and manufacturing 

lightweight components in the sports, automotive, army, aerospace, and other industries. 

In this chapter, numerical methods for generating RVEs (Representative Volume 

Elements) for random PRCs or FRCs are reviewed, and another technique will be 

introduced. The required techniques and algorithms are discussed and proposed for 

generating RVEs containing randomly distributed reinforcing inclusions. The software 

developed as part of this research (RVE_Maker) for generating different types of RVEs 

in both 2D and 3D is presented here. This program creates RVEs in order to be analyzed 

for obtaining specific physical (thermo-mechanical) properties of the composite material 

using finite element analysis (FEA). 
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6.2 Comprehensive Idea for Creating Microstructures 

To generate various RVEs with different types of particles, geometrical 

knowledge of the shapes, orientations, location and distribution pattern of the reinforcing 

inclusions is mandatory. Geometrical entities that morphologically match to the 

reinforcing inclusions can be inserted in a 2D rectangular region, or a 3D cuboid (box) 

by following a predefined distribution outline (locations with a certain orientation). 

Based on the above idea, several researchers employed different techniques and 

approaches to automatically generate RVEs. Okereke et al. (2002) developed a 

MATLAB code based on the Monte Carlo Method or Hard Core algorithm, in which a 

definite 2D rectangular RVE is occupied randomly until a predefined volume fraction is 

obtained. They also applied a constraint of periodicity of material on the generated RVE. 

Okereke’s code creates straight fibers by extruding a 2D circular model in the third 

dimension. A typical 3D RVE generated using the above approach is similar to Fig. 6.1. 

In addition, Digimat MF software provides a mean field homogenization of multi-phase 

materials, such that the model can be treated as a material with one set of parameters. 

 

 
Fig. 6.1. 2D circular particles are extruded to create 3D model (Okereke et al. (2002)). 
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Digimat FE is a software program that creates a 3D RVE structure (van Melick and 

Govaert, 2009). However, this software generates straight unidirectional fibers, and 

cannot consider the waviness of fibers. To expand the use of fibers in composites and 

accurately characterizing these types of inclusions in composite materials, as mentioned 

in Section 6.1, is needed. The main challenge in completely virtually exploring the 

capabilities of the FRCs can be ascribed to the obvious barriers of effectively modeling 

their geometry at the micro-level. This complexity becomes even more apparent while 

modeling the waviness of fibers and also modeling fibers with high aspect ratios (HAR). 

In this section, the concerns and issues for generating 2D and 3D composite 

models are categorized and listed from the simplest type of inclusions in 2D to the most 

complex one (Hybrid) in 3D. Nano-ceramic particles have the simplest but most 

fundamental geometry, which has a 2D circular shape. Now, in order to create them, as 

demonstrated in Fig. 6.2, the particles with the largest radius should be generated at first, 

through randomly locating their center and their radius. 

 

 

Fig. 6.2. Graphically illustrating how to check the intersection of 2D-circular particles. 
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Afterwards, the other particles can be created with respect to their radii 

successively from the large one to the smaller one. For checking the intersections, while 

locating a new center for a new particle, the distance between the central points of the 

newest particle should be greater than the summation of its radius and the radius of each 

of the previously generated particles. 

The next category of well-known nanocomposites is nanoclay/polymer 

composites. Nanoclay particles in both intercalated and exfoliated conditions have 

ellipsoidal shape (but different aspect ratios and properties) (Sheng et al., 2004). As 

TEM images have revealed (Khan, 2011, c; Yung et al., 2006), the main geometrical 

characteristic of nanoclay particles is their high aspect ratios, in such a way that they can 

be considered as a planar sheet in fully exfoliated condition. Therefore, in order to 

virtually generating these inclusions in two-dimensions, one should note that the cross 

sections of these particles are ellipse-shape with high aspect ratio. The procedure for 

generating the ellipse-shape geometry is firstly locating the center of the particle in a 

random way. Then, the end point of the major axis should be identified, through the 

length of the major axis, and then the angle of rotation. Finally, the length of the minor 

axis and/or the point at the end of this axis is required to define the geometry (Fig. 6.3 

(a)). Now, for generating the next elliptical particles, the same procedure should be 

followed, and moreover the intersections of the newest particle and the previous ones 

need to be checked. There are two ways to check the intersection of these geometrical 

entities. The first and most costly one is mathematically checking the intersection of 

ellipses, through solving a system of non-linear equations of conical equations in matrix 

form. This method is not practical, since the geometries should be finally meshed, and 
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using this method accepts very close particles as not intersected ones. This condition 

causes problems in meshing and analyzing the RVE; therefore, the second method needs 

to be introduced. In this approach, since these particles have high aspect ratios, they can 

be approximated by their closed bounding rectangle regions. This method has two 

advantages: (1) Checking the intersections of two rectangles are computationally less 

costly than solving a system of non-linear equation, because the intersections of line 

segments should be checked, and (2) Preventing the highly closeness of the clay 

particles is intrinsically required for FEA, similar to Fig. 6.3 (c). 

 

 
 

   

Fig. 6.3. 2D caly particles geometrical parameters and intersections: (a) Parameters for 
drawing ellipse. (b) Clay particles and the related bounding regions. (c) Illustrating how 
to check the intersection of elliptical particles through using the bounding rectangles. 
 

Circular and elliptical particles are regular geometries, but the cross-sections of 

many types of composite materials show irregular fuzzy shape domains. In this case, 

there is no mathematical formula to check the overlaps or intersections of such irregular 

regions. Therefore, one way is defining a second order array containing zeros for all 

(a) 

(b) 

(c)
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cells of the array. The size of the array should be equal to the dimensions (length and 

width) of the RVE, which is divided by the required grids size. One can reduce the size 

of the grids to increase the accuracy of creating the irregular regions. Then after creating 

each particle or region, the related cells (or grids) in the main array that are inside the 

particle’s boundary, should be updated by a number that identifies the related phase. For 

example in Fig. 6.4 (b), the cells in the white domain are zero (the matrix), the green 

ones are 1 (phase 1), reds are 2 (phase 2), and number 3 has been assigned to the yellow 

regions which are phase 3. 

To generate a fuzzy irregular shape, the center of the particle or region should be 

located randomly, and checked not to be inside the other particles or phases. Then, as 

demonstrated in Fig. 6.5, the use of a series of radii that vary using a Fourier series 

formula in between a predefined range, leads to the creation of boundary of the irregular 

phase. The geometry can be enhanced by increasing the number of discretizing grids. 

Hiring more Fourier terms delivers more sophisticated geometries. 

 

  

Fig. 6.4. Materials with irregular phases: (a) Different phases and their overlaps and 
intersections. (b) Contact faces or overlaps of different phases through using an array. 

(a) (b)
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Fig. 6.5. Presenting how to generate an irregular phase using a center and variable radii. 
 

Today, due to powerful computers along with the capabilities of high 

visualization devices, researchers can create more realistic and sophisticated models to 

better investigate the behavior of materials. Therefore, creating and analyzing three 

dimensional RVEs is more desirable. 

In reality, ceramics are almost spherical shape particles, where a cross section of 

such a composite contains 2D circular shape inclusions, as shown in Fig. 6.6. The 

procedure for generating spherical particles is similar to the method explained for 2D 

circular particles. The only difference is that the central point of the particles should be 

randomly defined in a 3D space (inside a box), and the 3D distance between the centers 

of the spheres should be checked for intersections. The most important significant idea 

in this case is meshing a spherical particle inside a 3D RVE. A sphere has no edge on the 

surface, therefore one cannot seed mesh nodes on the surface of it; thus, so many 

elements will be generated while meshing these entities using the commercial software. 

This forces the mesh generator engine to create more meshes around the particles and 

inside the RVE. It is obvious that simulating a model containing a huge number of 3D 

elements is not a proper decision. Therefore, as can be seen in Fig. 6.6, the spheres 
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should be sliced to two parts, and the edge of the slices will let the particles be seeded 

for reducing the number of generated meshes. 

 

 

Fig. 6.6. Checking the intersections of 3D-Spherical particles. 
 

For creating 3D nanoclay particles, which is the realistic shape of these particles 

(as mentioned before), there are more issues while generating them in comparison to the 

2D cases. In fact, to geometrically identify these particles, one needs to specify the 

length of the major axis, the aspect ratios of both mean and minor axes (with respect to 

the major axis), and the three angles of rotation in three-dimensional space. Fig. 6.7 (a) 

depicts these required parameters. Simulating RVEs containing 3D ellipsoids with such 

high aspect ratios has no difference in comparison to the ones containing thin plate shape 

objects. Also, creating such 3D ellipsoids makes some problems; for example, these 

ellipsoids have sharp edges which need so many elements to discretize it smoothly. 

Moreover, creating them in both AutoCAD and ABAQUS is very difficult. Now, since 
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3D ellipsoids have no advantage in comparison to the 3D thin disk-shape particles; 

therefore, 3D nanoclay particles can be approximated by very thin platelet objects as 

shown in Fig. 6.7 (a) and (b). After generating these 3D objects, there are two ways for 

checking their overlaps or intersections. As discussed for the 2D ellipses, the first way is 

mathematically checking the intersection of 3D ellipsoids, which needs a non-linear 

system of equations to be solved in matrix form. This method is very time consuming. 

But, the second way is checking the positions of these particles through using the 

bounding box around each of them. 

 

 

 

 

Fig. 6.7. 3D caly particles geometrical parameters and intersections: (a) Drawing ellipse 
parameters. (b) Checking the intersection of ellipsoidal particles using bounding boxes. 
 

The cuboids as shown in Fig. 6.7 can be utilized for probing the overlaps of these 

objects. This technique has two advantages; at first it is faster than solving the equations, 

(b) 

(a) 
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and secondly it prevents the highly closeness of these particles (that makes problems 

while meshing and analyzing). It is worth mentioning that when checking the 

intersections of ellipses or ellipsoids, and even other objects, there is no need to consider 

and compare all the particles with each other. In fact, just the particles in the vicinity of a 

newly created particle can be checked out. 

One of the most interesting and important inclusions for enhancing the thermo-

mechanical responses of composites (especially polymer based composites) are carbon 

nano tubes (CNTs) or carbon nano fibers (CNFs). Almost all the models generated by 

different researchers have been made of well dispersed straight fibers (Chen and Liu, 

2004; Mishnaevsky, 2007; Muliana and Kim, 2007; Okereke et al., 2002; Ostoja-

Starzewski, 2002; Song and Youn, 2006). However, the TEM images in that scale reveal 

that during manufacturing processes, these fibers become wavy because of the very high 

aspect ratios that cause no resistance to bending. In the open literature, there are many 

debates regarding the effects of CNTs on nanocomposites, in such a way many claimed 

substantial improvements have been achieved using CNTs (Ajayan et al., 2000; Moisala 

et al., 2006; Qian et al., 2002), but others mentioned just modest enhancement can be 

obtained (Chen et al., 2006; Gojny et al., 2006; Zhu et al., 2004). Besides, most of the 

researchers have modeled the CNTs as straight objects in three dimensions, or as wavy 

thread-shape objects through using beam or truss elements in 3D RVEs, that all are 

approximations for simply producing these inclusions. Therefore, it was decided to 

create realistic 3D geometry of the CNTs as straight, rod, and curved shape objects. In 

the following, the procedure for randomly generating these inclusions is explained. 
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The main problem in creating the three-dimensional fibers is how to apply 

waviness to bend these objects in a 3D space, and then how to check the intersection 

between the generated fibers. To solve these issues, at first creating wavy fibers is 

clarified. The length of fibers change in a range; so, one can select a random length in 

that range. Then, the chosen length should be divided to several segments. The next 

parameter for identifying the waviness is the bending angle between two segments. 

Now, this algorithm should be followed to create a 3D fiber. 

1) One random point should be selected inside an RVE, as the start point of the first 

segment of the fiber. 

2) A random point should be chosen on the surface of the sphere that its center is the 

first selected point, and its radius is the length of the segments (see Fig. 6.8). 

 

 

Fig. 6.8. possible points on surface of a sphere for creating the first segment of a fiber. 
 

3) Then, the first segment of the fiber can be generated by constructing a 3D cylinder 

that has two points and its radius is the fiber’s radius. 
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4) In order to find the other segments successively, as shown in Fig. 6.9, a cone of 

possible points must be considered in front of the previous constructed segments, 

such that the view angle of the cone is twice of the bending angle. In fact, the 

possible points are laying on the surface of a sphere cut by a cone that its angle of 

view is twice of the bending angle. 

5) One point should be selected randomly from that 3D rotated cone, like Fig. 6.9. 

6) Using the selected point on the 3D cone, and similar to step (3), the cylindrical 

segment can be built. 

 

 

 

Fig. 6.9. Possible points in front of each segment of a 3D fiber: (a) Rotated view to show 
the cone, (b) Side view depiction of cone and segments. (The coordinate triad is just 
schematic; black line is in direction of axis of previous segment). 
 

The technique of assuming a cone is employed instead of selecting a random bending 

angle, because finding a random angle is proper for a 2D case and not a 3D one. Since in 

(a)

(b)
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a 3D space, such point can be located through using three rotation angles. But, the main 

problem occurs when the new segment faces to the previously generated fibers (or 

particles in hybrid cases), as seen in Fig. 6.10. 

 

 

Fig. 6.10. Depiction of possible points that can be selected in a traceable manner not to 
intersect the previously generated fibers. 
 

For example, if only three random angles are selected and the related cylinder 

segment intersects with other inclusions, the number of repetition to escape from the 

entrapped situation will be too high with no satisfactory achievement. Fig. 6.10 shows 

how the possible points on the cone in front of each segment of a 3D-Fiber provide a 

predefined traceable condition to bypass the fibers (or particles). After creating the first 

fiber, while creating the segments of other fibers, the intersections of a new segment 

with the previously generated segments should be investigated. As demonstrated in Fig. 

6.11, the minimum distance between the line segments of the axis of two cylinders must 

be calculated, and compared with a critical length. 

To make a smooth geometry of the fibers, two approaches can be followed. 

Firstly one may divide the total length of each fiber to many small segments, and the 

other one is converting the 3D axis line of the current generated fiber to a 3D spline. 
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Fig. 6.11. Checking the closeness of 3D segments of two fibers. 
 

In Figs. 6.8 to 6.11, none of the abovementioned ways to make smooth fibers is used to 

illustrate the segments, their connection, bending angles, and the front probable points 

on a conical region. It is obvious if the maximum bending angle is considered to be zero, 

the fibers are created as straight unidirectional or randomly oriented rod shape objects. 

The corresponding image for straight or rod fibers are demonstrated in the next section. 

The most complex geometry for a 3D RVE is a combination of wavy fibers in the 

neighborhood of particles. These combinations can be carbon nanotubes and nano 

ceramics, as well as carbon nanotubes and nanoclay particles. In order to create such 

hybrid composites, the same procedure as previously explained for each of the inclusions 

must be followed. However, while generating each of them the intersections should be 

checked out. For creating a mixture of spherical ceramics and fibers, at first the nano 

ceramic particles can be generated, and afterwards the fibers. During the construction of 

each fiber, the position of cylindrical segments and the neighboring spherical particles 

must be checked. This task can be accomplished by finding the minimum distance of the 

center of a sphere and the nearest cylindrical segment. As demonstrated in Fig. 6.12, the 
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calculated distance should be greater than the summation of the radii of the fiber and the 

sphere, and a defined margin (the margin can be a ratio of the both mentioned radii). For 

the case of hybrid composite containing fibers and nanoclays, the same procedure as 

previously explained for each of the inclusions must be pursued. Here again, at first the 

clay particles are generated, and subsequently the fibers. 

 

 

Fig. 6.12. Checking the intersection of 3D spherical particles, and 3D fiber inclusions. 
 

 

Fig. 6.13. Checking the intersection of 3D ellipsoidal particles, and 3D fiber inclusions. 
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Now, during the construction of each fiber, the position of cylindrical segments of fibers 

and the neighboring cuboids (the bounding box) surrounding the clays should be probed, 

as demonstrated in Fig. 6.13. 

6.3 RVE_Maker, Microstructural FE Models Generator 

In this section, the computational code that has been developed for modeling 

micro/nano composites is presented. In order to virtually (numerically) investigate the 

mechanical behavior of various polymer composites, creating geometrical representative 

models for different types of particles and inclusions is mandatory. Because manually 

generating complex models is almost impossible, to overcome this issue, innovative 

technical software called RVE_Maker is designed and developed through utilizing 

Borland C++ Builder 6. RVE_Maker is designed to create simple and complex 

geometries for composite materials, in both 2D and 3D. It is capable to automatically 

generate RVEs for composites that contain randomly dispersed particles. The first screen 

shot of the RVE_Maker and a sample page for identifying geometrical parameters are 

displayed in Fig. 6.14. 

To generate random numbers for geometrical parameters, such as locating 

centers of particles, length, aspect ratios, diameters, etc., a pseudo random number 

generator is used to produce a real number from a uniform distribution between zero and 

one ( [0,1]x ). Then, this selected number is converted to the proper range for each of 

the parameters, through a linear transformation, as follows 

    Random Number rand 0 , 1 MaximumRanda b a     (6.70) 
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Fig. 6.14. Screen shots of RVE_Maker software: (a) first page, and (b) page for 
identifying geometrical parameters of 3D fibers. 
 

where a  and b  are the lower and higher limitations of the parameters range, 

respectively. The variable “MaximumRand” is used to normalize the calculated random 

number, which depends on the compiler and operating system (OS), which are for this 

study Borland C++ and Windows 64 bit, respectively. This program is capable of 

generating and dispersing different types of particles and inclusions for micro/nano 

composite materials. From the menus and options in the software, one can set the 

required geometrical parameters for automatically generating a desired model. It should 

be noted here that not only the positions of particles are random, but the nature of the 

inclusions’ shape and size are also random. Thus, the geometrical parameters can be 

picked randomly from a reasonable range, to depict random shapes, size and distribution 

(b)(a)
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patterns. Then, the program randomly checks the available unoccupied positions inside 

the RVE region (rectangle or cube) for creating particles. Afterwards, with respect to the 

geometrical parameters, such as radius, thickness, aspect ratios, orientations, etc., the 

program checks the intersections of the newest inclusion according to the previously 

generated objects. If there is no overlap or intersection, then the new particle is inserted 

to its proper location, and its geometrical properties will be recorded in a data bank. 

The program creates the inclusions up to the desired volume (3D) or area (2D) 

fraction. The geometrical data in the recorded data bank should be drawn in proper 

software. Henceforth, the program automatically writes the required script files (which 

are also called command files) for AutoCAD. When the first script file is played in 

AutoCAD, it automatically draws the geometry entities, and when the second script is 

run, it converts the entities to standard geometrical files (.SAT files, Standard ACIS 

Text) that can be read by other CAD family software. 

In order to create finite element representations from the generated numerical 

models; here ABAQUS (2008) software is employed. Thus, the generated depicted 

entities in AutoCAD must be exported to ABAQUS. ABAQUS is able to be managed by 

C++ codes or Python script codes; therefore, the RVE_Maker program automatically 

generates the required Python command code, as well. This code imports the created 

geometry (.SAT file) from AutoCAD to ABAQUS. Subsequently, the Python code 

applies all the required options and settings to the model to create a complete finite 

element representation as a CAE (Computer-Aided Engineering) file. 

The most important task of the Python code is generating elements for meshing 

the RVE. This task can be accomplished by carefully seeding each edge of the inclusions 
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in order to optimize the number of generated elements. The program can use 3-node 

(Trigonal) or 4-node (Quadrilateral) elements to mesh a 2D RVE. For the three 

dimensional cases, 3D-Stress elements containing 4 nodes (Tetrahedral) should be used 

to mesh a complex 3D domain. 

For both 2D and 3D cases, a free meshing method in which mapping technique 

and element size growth are allowed, has been employed. Even though utilizing 8-nodes 

(Hexahedral) elements are more efficient in comparison to the Tetrahedral elements 

(create less elements), and also its numerical solution is more stable; it is almost 

impossible to mesh a complex 3D model with Hexahedral elements, even for simple 

spherical particles. 

The next essential task of the Python code is assigning the material properties to 

each particle or region inside the RVE. These mentioned tasks are much more critical 

while creating complex geometries. The Python code also applies constraints to the 

RVEs edges; for 2D cases at the bottom side in the vertical direction (Y-direction) and at 

the left side in the horizontal direction (X-direction), whereas periodic boundary 

conditions (BC) are applied to the right edge of the RVE to force the right side nodes to 

move simultaneously with each other, Fig. 6.14. 

 

 

Fig. 6.15. Demonstrating periodic boundary conditions in a 2D RVE. 
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Actually, the horizontal displacement of nodes on the right edge (all nodes but one = 

NodeSet) should be the same as the displacement of the node (Tie-Point) at the corner of 

right and bottom edges (both Fig. 6.14 and Fig. 6.15 (a)). 

 

          

 

Fig. 6.16. Boundary conditions and constraints: (a) on 2D RVE, (b) BCs and forces on 
3D RVE, and (c) Constraints on lateral faces of 3D RVE. 
 

For the case of 3D RVEs, the XY-, YZ-, and ZX-faces at the lower level coordinates are 

constrained with roller supports, respectively not to move in Z, X, and Y directions. 

(b) 

(a) 

(c)
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                    (a)                                            (b)                                            (c) 

Fig. 6.20. Spherical shape of ceramic particles: (a) Real 3D TEM image of NCRP, (b) 
Extended zoom of geometrical model created in ACAD, (c) Close up zoom of image (b). 
 

   
                    (a)                                            (b)                                            (c) 

Fig. 6.21. Ellipsoidal shape of clay particles: (a) Schematic image of exfoliated NCLP 
(thin platelet disk), (b) Extended zoom of geometrical model created in ACAD, (c) Close 
up zoom of image (b). 
 

RVE_Maker program is able to generate all types of the straight, random rods, 

and curved shape fibers. This capability provides possibility for analyzing and 

comparing different realistic fiber configurations. Comparing Fig. 2.2 that was generated 

by Meso3DFiber software with Figures 6.21 to 6.23, clearly illustrates the capability of 

the RVE_Maker software for creating complex nano-composites geometries with fibers. 
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(a) Curved shape CNTs.  (b) Model’s extended view in ACAD. (c) Close up view of (b). 

 

(d) Rod shape CNTs.     (e) Model’s extended view in ACAD.    (f) Close up view of (e). 

 

(g) Unidirectional CNTs.  (h) Model’s extended view in ACAD. (i) Close up view of (h). 

Fig. 6.22. Different types of nano fibers or nano tubes generated by RVE_Maker. 
Images in (a), (d), and (g) are three-dimensional TEMs. 
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Fig. 6.23. Hybrid composite consist of CNT and spherical particles: (a) 3D SEM image 
of nano platinum particles (NPP) and CNT, (b) Extended zoom of created model in 
ACAD. (c) Close up zoom of (b). 
 

 

Fig. 6.24. Hybrid composite consist of carbon nano fiber (CNF) and naoclay particles: 
(a) 3D SEM image of nano clay particles and CNF, (b) Extended zoom of created model 
in ACAD, (c) Close up zoom of image (b). 
 

In order to simulate a desired created RVE, the mechanical behavior of the 

inclusions should be determined. In many cases, because the matrices of the composites 

are much softer than the inclusions; therefore, just elastic mechanical properties are 

enough to be considered for the inclusions. However, in some cases, if the amount of the 

transferred load from matrix to inclusions is very high, then the elastic response of the 

particles will not be enough to represent the realistic behavior of the composites. Thus, 

(a) (b)

(c) 

(c) 

(b)(a) 
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elastic-plastic or elastic-damage behavior may be considered and utilized (for the 

inclusions) in these meso-scale finite element simulations, in order to reasonably 

characterize the response of the composites. 

6.4 Proper RVE Size 

The homogenized responses for simulating RVEs highly depend on the 

distribution of the inclusions inside an RVE. One RVE must guarantee and deliver a 

certain accuracy of the estimated property that is attained by spatial averaging of the 

given criteria. 

If the size of an RVE is small, then it may not have all possible orientation and 

distribution for particles. Thus, if another random distribution is considered, then the 

desired response will be way different from the response of the previous distribution, 

which means the response of the RVE in that size is not reliable. Henceforth, the size of 

the RVE should be large enough as compared to the characteristic size of the inclusions, 

such that the RVE statistically engulfs all different particles distributions and 

orientations, so that the response of the RVE deviates in a small acceptable range, and 

the size effect of the RVE is negligible. Therefore, in order to determine the proper size 

of an RVE, a number of realizations of the microstructure (RVEs with different sizes, for 

example: 1.0 1.0, 1.5 1.5, 2.0 2.0,   22.5 2.5 μm ) should be generated. Then 

several random distributions of the inclusions for each size should be produced. At least 

five different distributions for each size are required to study and compare the responses. 

Afterwards, all the created microstructure models must be submitted for simulation, 

under the same loading and periodic boundary conditions. Then the achieved properties 
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should be recorded. From the recorded results of the various simulated random 

distributions; the maximum, minimum, mean value and variance of the obtained 

response should be computed. 

The desired response can be listed as: Young’s modulus of the composite, the 

peak stress of the stress-strain curve, the toughness modulus (the area under the stress-

strain diagram), or the maximum of the creep response after a definite time. Then, one 

can explore that after which size, the deviation of minimum and maximum of the 

response converge to a certain constant range. This means the behavior of the RVEs that 

are larger than the obtained optimum size, with any random distribution of that type of 

particle, results in the same acceptable range, and the effect of the RVE size on the 

ultimate strength of the nano-composite response will be negligible. Again, the number 

of realizations should be sufficient for each volume size. 
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CHAPTER VII 
 

MICROMECHANICAL RESPONSES OF POLYMER NANO- 

COMPOSITES USING VISCOELASTIC CONSTITUTIVE MODEL 
 

7.1 Introduction 

In engineering and industrial fields, utilizing the particulate-filled polymer 

composites has been encouraged by their interesting material properties for different 

types of applications. Adding rigid (or elastic) particles to polymers or other matrices as 

the host materials, can provide a number of desirable effects, such as: reduction in the 

thermal expansion coefficient, increase in stiffness modulus, enhancement in the creep 

resistance, and also improving the fracture toughness of polymer composites (Ahmed 

and Jones, 1990). 

The enhancement in the physical characteristics of a filled polymer results from a 

complex interaction between the properties of the different phases or inclusions (the 

matrix, the particles and the interfacial regions). The results of experimental data support 

this statement and reveal that the distribution of the reinforcing particles and the 

randomness pattern of the constituents can greatly influence the mechanical behavior of 

the composites (Chawla et al., 1998; Watt et al., 1996). Through extensive observations 

it is revealed agglomeration and network formation of the particles are responsible for 

the high levels of reinforcement, and also the breakdown of networks and the de-

agglomeration are the main source of the non-linear responses of strain (Heinrich et al., 

2002; Kraus, 1984). It means that the overall macroscopic behavior of particulate 
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composites is governed by the size, shape, aspect ratios, and the statistical random 

distribution of the reinforcing inclusions. Therefore, in order to design the best structural 

arrangement for a composite material, it is crucial to determine the overall macroscopic 

behaviors of the composites and understanding the responses of each component, when 

the composite is subjected to different types of external loadings. 

However, theoretically the effects of these constituents have not been 

satisfactorily modeled. The specific surface area of the constituents extremely increases 

once the average particle sizes is smaller than 600 nm, which leads to a strong tendency 

to agglomeration (Osman and Atallah, 2006). Also in nano-composites, more clusters 

can be formed in comparison to micro-composites, due to their large contact area 

(surface energy) between the particles. In addition, these clusters are stronger than the 

ones in micro-composites, and can be packed much better than the roughly spherical 

micro-particles, which improve the modulus and viscosity. Several researchers have 

claimed that the primary fundamental mechanism for reinforcement and non-linear 

behavior appears to be the filler-matrix interactions, but not filler agglomerations 

(Osman and Atallah, 2006). In addition, micromechanical simulations predict that the 

viscoelastic and mechanical properties of PCMs do not depend on the size of particles 

(Barnes et al., 1989; Choi and Krieger, 1986). Nevertheless, there exist contradictions in 

the literature data and results, and the consequences of circular micro-inclusions on the 

viscoelasticity are still debatable (Cai and Salovey, 1999; Vollenberg and Heikens, 

1989). Unfortunately, there is fairly little data regarding non-linear viscoelastic 

responses and performance at low volume fraction particulated polymer composites. In 

open literatures, the main focus was on fiber reinforced composite, and fairly few studies 
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have been conducted to analyze the viscoelastic responses of polymer composite 

materials, based on particles shapes and properties. 

To have a fundamental understanding on the effects of the presence of particles 

and their properties on the overall response of composites, various micromechanical 

models have been formulated (Nemat-Nasser and Hori, 1999). As mentioned in Chapter 

2, the homogenization studies focused on just elastic or heat conduction response of 

PCMs. Though, there is no analytical solution for complicated constitutive models. In 

most researches, micro-macro approach is assumed to determine the homogenized 

viscoelastic response of a composite (Khan and Muliana, 2009), and then the 

deformation in the composite is measured at multiple length scales. There is no 

analytical and/or homogenization technique for studying complex geometries that is 

governed by advanced constitutive models. Henceforth, the only possible way is finite 

element approach. Furthermore, in many cases, it is not computationally practical to 

incorporate every detailed characteristic of the inclusions and all microstructural 

geometry features, such as: considering cohesive contacts or cohesive elements for the 

interface of inclusion-matrix modeling (especially in complicated geometries), and also 

realistic 3D irregular shape of inclusions for a large scale representative volume element 

(RVE). Creating and simulating such RVEs and then analyzing their performances in 

order to design a better microstructural composite, may be very difficult. 

Polymethyl methacrylate (PMMA) is widely used in different applications, and is 

usually mixed with various minerals (e.g. nano-clay or nano-ceramics) to customize its 

properties to the requirements of certain purposes. Spherical particles have been used in 

different studies as the simplest type of inclusions, since creating and handling these 
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geometries are easy (as explained in Chapter 6). Actually, there is no need to take care of 

the orientation of circular and spherical (in 2D and 3D) particles while loading. But, in 

the case of non-spherical ones such as platelet, ellipsoids, and tubular shape inclusions 

the degrees of orientations with respect to the applied stress are important factors. 

Several micromechanical creep-recovery and cyclic loading simulations have 

been conducted and presented for predicting the viscoelastic responses of particulate-

filled PMMA polymer composites, in small strain range. Therefore, Schapery’s three-

dimensional non-linear viscoelastic model based on recursive method for updating 

hereditary strains is employed (Haj-Ali and Muliana, 2004). Moreover, the stress 

predictor for the trial stress has been modified in order to decrease the number of 

iterations for viscoelastic convergence. The first part of this chapter is a review and 

simulations of just viscoelastic behavior of two and three dimensional particulate 

reinforcement polymer composite materials (PCMs), in small strain range. In the second 

part, the overall effects of shape and weight fractions of nano-clays and nano-ceramics 

on viscoelastic, viscoplastic, and viscodamage response of PCMs are studied and 

demonstrated, for quite a few 3D micromechanical models. 

7.2 Constitutive Model 

7.2.1 Non-Linear Viscoelastic Model in Small Strain Framework 

Even though in Chapter 4 the derivation of Schapery model is presented, it is in 

large deformation concept, and in order to capture the viscoelastic response of PCMs in 

small strain range, the conventional Schapery single integral model should be employed. 

Therefore in this section, the Schapery’s non-linear viscoelastic model (Schapery, 1969 
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b) is used to model the viscoelastic response of PMMA polymer which is the matrix of 

the composites. The Schapery’s viscoelastic one-dimensional convolution single integral 

model is expressed in terms of the Cauchy stress,  , as 

    2NVE,
0 0 1

0

d ( )
( ) ( ) d

d

t
t t t t t

g
g D g D

 


 
      


     (7.1) 

where 0D  is the instantaneous compliance, and D  is the transient compliance. 0g , 1g , 

and 2g  are non-linear parameters related to the stress level,  , at specific time  . The 

parameter 0g  measures the increase or reduction in the instantaneous compliance, the 

parameter 1g  deals with the non-linearity effect in the transient compliance, and the 

parameter 2g  accounts for the loading rate effect on the creep response. Also t  is the 

reduced time and expressed similar to Eqs. (4.15) or (5.9). The Ta  and sa  are the 

temperature, and strain-or-stress shift factors, respectively. Here, since the viscoelastic 

response in the reference temperature is studied, thus: 1Ta  . For the purpose of 

representing the transient part of a viscoelastic response two methods are usually used: 

power laws and exponential Prony series. Thus, for numerical purpose, the Prony series 

is utilized to capture the transient compliance, D , the same as Eq. (5.10). As proposed 

by Lai and Bakker (1996), the one-dimensional nonlinear viscoelastic model in Eq. (7.1)

can be generalized to three-dimensional problems by decomposing the viscoelastic 

response into deviatoric and volumetric parts, such that 

 ve ve ve
dev vol dev vol dev vol

1 1 1
1 1 1

3 2 9 2 3

J B
G K

           
          

 (7.2) 
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Here, 1

 is the identity tensor (Kronecker delta). NVE

dev
  

and NVE
vol  are deviatoric (tensor) 

and volumetric (scalar) strain, respectively. G  and K  are the shear and bulk moduli, 

respectively, which are related to the Young’s modulus, E , and Poisson’s ratio,  , as 

  / 2(1 ) , / 3 1 2G E K E      (7.3) 

dev vol

1
1

3
   

   
 and vol  are deviatoric (tensor) and volumetric (scalar) stress in the 

current configuration. Using the Schapery’s integral constitutive law, Eq. (7.1), and after 

some mathematical manipulations (Lai and Bakker, 1996), the deviatoric and volumetric 

non-linear viscoelastic strain components can be partitioned and expressed at time t , as 
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 (7.6) 

J  and B  are the shear and bulk compliances, and the material constants 0J  and 0B  are 

the instantaneous effective elastic shear and bulk compliances, respectively. Similar to 

Chapters 4 and 5 the Poisson’s ratio   is assumed not to be a function of time. Using 

the Prony series for the transient compliance, the deviatoric strain tensor, NVE
dev


, and the 

volumetric strain, NVE
vol , can be expressed in terms of the hereditary integral formulation 

as (Haj-Ali and Muliana, 2004) 
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Eqs. (7.7) and (7.8) are very useful for the numerically implementing the nonlinear 

viscoelastic model in finite element codes or software. The values of viscoelastic 

material parameters are presented in Table 7.1 and 7.2. 

 

Table 7.1: Viscoelastic material parameters for the PMMA (Lai and Bakker, 1996). 

N 1 2 3 4 5 6 7 8 9 

n (s-1) 1.0 0.1 0.01 310  410  510  610  710  810  

nD  (MPa-1) 610  23.63 5.66 14.84 18.88 28.58 40.06 60.42 79.65 162.18

0D  (MPa-1) 610  271 

 

Table 7.2: Non-linear viscoelastic parameters for the PMMA (Lai and Bakker, 1996). 

Stress (MPa) 15 20 25 30 35 40 

a  1.0 1.0 1.0 1.018 1.067 1.493 

0g  1.0 1.0 0.973 0.946 0.897 0.861 

1g  1.0 1.0 1.045 1.197 1.345 1.197 

2g  1.0 1.0 1.197 1.600 1.919 2.677 
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Based on the experimental data published by Lai and Bakker, the creep and recovery 

simulations in different stress levels for pure PMMA polymer are conducted, checked, 

and shown in Fig. 7.1. These data are the ones which are used in Chapter 5 to calibrate 

the large deformation viscoelastic model. Thus, in Fig. 7.1, the numerical model is 

conducted using small strain Schapery model. These experimental data are also used to 

compare the effects of the presence of different types of particles in the overall creep and 

recovery response of the composites. 

 

   

Fig. 7.1. Predicting the behavior of PMMA under a range of tensile loading at T=296 K. 
(a) Creep Test (30 minutes), (b) Recovery Test (60 minutes). 
 

7.2.2 Trial Stress and Corresponding Enhancement 

In the Schapery viscoelastic constitutive model, in each analysis time increment, 

an approximation of the unknown stress increment need to be determined. This 

estimation is based on the strain increment, hereditary integrals, and Prony series. 

Therefore, a trial stress should be found for the deviatoric and volumetric part of strain, 

and then the other viscoelastic calculations can be conducted based on these computed 

(a) 

(b)
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trial stresses. Comparable to the Subsections 4.4.2 and 5.3, here in order to enhance the 

value of the trial stresses to expedite the convergence in the viscoelastic model, the 

related equations for the trial stresses are presented, and then the new equations for the 

improved trial stresses are explained. According to Eqs. (4.55) to (4.57) the deviatoric 

and volumetric strain increment in small deformation framework can be written as 
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For computing the trial stress, one needs to assume some approximations, like 
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Therefore, Eqs. (7.9) and (7.10) will be reduced to the following relations for making an 

estimation of the stress state in the current time increment. 
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 (7.12) 

In these equations, the effects of the non-linear parameters in the current time increment 

have been removed. Thus, for enhancing these trial stresses, at first Eq. (7.12) should be 

computed and then through considering Eq. (4.64), the updated trial stresses may be 

modified as 
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7.2.3 Energy Dissipation Through Viscoelasticity 

The increase in temperature is attributed to the dissipation of energy and is due to 

the viscoelastic deformation in the viscoelastic constitutive model. Viscoelastic solid 

materials are categorized as dissipative materials, and during the mechanical 

deformation, significant amount of heat could be generated which affects the 

temperature of the viscoelastic domain. For investigating the energy dissipation through 

mechanical deformation, studying the entropy and specific heat is mandatory. The 

entropy relation for Schapery’s viscoelastic model, based on Gibbs complementary 

energy, G , was expressed in Eq. (4.1) which is written based on functions and tensors of 

stress and temperature, and also the internal state variables (ISVs). ISVs represent the 

equivalent springs and dashpots in the model. Recalling Eqs. (4.9) to (4.11) 
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1,m mn n T mn n
m m

G GA B a C 
 

 
  

 
  (7.15) 

here mnC  is a positive definite symmetric coefficient tensor, and a  is a positive scalar 

that is a function of temperature and stress. Solving the above equations together (see  
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Chapter 4 and (Khan, 2011) for more detail) delivers m  (ISVs) that can be expressed 

  
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1 d
1 exp( ( )) d

d
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m m
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A
K b



    


           (7.16) 

m  is the inverse of positive retardation time. b  is the inverse of stress shift factor (Eq. 

(4.14)). In thermodynamics, Gibbs free energy is defined as 

 ( , )G p T H TS   (7.17) 

Here H  is enthalpy, S  is the entropy, T  is absolute (Kelvin) temperature, and p  is the 

applied pressure. Also, entropy is defined as the rate of changes of Gibbs free energy 

with respect to the absolute temperature, i.e.: ( )
G G TS S
T T
 

   
 

. Replacing Eq. (4.1)

into this relation 
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  
 (7.18) 

The mathematical form for mA  that characterizes the master creep function was 

introduced in Eq. (4.23), and considering the Cauchy stress it can be expressed as 

 ˆˆm mj j mA K      (7.19) 

in which m  is the thermal expansion coefficients, and ̂  is a function of stress and 

temperature, but ̂  is just a function of temperature. By substituting Eqs. (7.16) and 

(7.19) in the recent formula for entropy, one can come up with 
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where d ( )k   is the creep compliance thermal expansion, and d ( )D   is the transient 

components of the specific heat (in a certain stress level) which are expressed as 

   
2

d ( ) 1 exp( ) , d ( ) 1 exp( )mk m m
k m m

m mm m

K D
K K
               (7.21) 

mK  is the diagonalized terms of the second rank tensor mnK . The specific heat capacity 

(or thermal capacity) in a certain pressure is defined and expressed as 
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 (7.22) 

Replacing Eqs. (7.20) and (7.21) in the equation expressing the specific heat capacity, 

the specific heat capacity can be obtained as 

2
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 (7.23) 

According to the first and second thermodynamics laws, the internal entropy production 

rate, S can be explained (Rice (1971), Schapery (1964, 1966)). As a result, the rate of 

generated internal entropy may be written 

 ve
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m

GTS 



   


   (7.24) 

By substituting Eq. (7.16) into Eq. (7.24), one can get 
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Simplifying the recent equation and removing the specific heat retardation and the 

thermal transient parts, the following relation can be achieved 
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The reader is referred to Appendix A of (Khan, 2011) for more detail about the 

derivations of energy dissipation through viscoelastic model. Eventually, one can derive 

an equation which relates the temperature, rate of temperature change, and dissipated 

energy through viscoelastic components. 
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If there exists no external heat flux, Eq. (7.27) will be re-written as 
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Recalling the hereditary integral from Eq. (4.41), then Eq. (7.28) can be modified as 
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The derivation in the third term in the RHS can be numerically simplified as 
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Discretizing the continues time (replacing dt  to t ), and after some manipulation 
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Therefore, Eq.(7.29) can be re-written (summation over i and j) as 
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Finally the incremental change in temperature may be computed as 
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In this equation, the summation over hereditary integral can be calculated, and ,
t
ij mq

 

should be stored to be used in the next increment. 
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The required material parameters for computing the change of temperature during 

loading are presented in Table 7.3. 
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Table 7.3: Material properties for computing temperature changes. 

Matrix Density (  ) Specific Heat ( pc ) 

PMMA 31200 kg m  1470 J (kg K)  

 

7.3 2D and 3D Microstructural Models 

In this section, two and three dimensional dispersed perfectly bonded intercalated 

nano-clay particles (NCLP) and also nano-ceramic particles (NCRP) (with two different 

radii) in a PMMA polymer matrix are studied. The effects of particles distribution and 

shape on viscoelastic response of the composites, through micromechanical simulation 

of the RVEs that are subjected to uniaxial compressive load under isothermal condition 

are presented. In Fig. 7.2, some samples of the generated 2D RVEs are shown, which 

depict the applied loads and boundary conditions. These images demonstrate the random 

distribution of NCLPs and two different sizes of NCRPs inside the polymer composites. 

In Fig. 7.3, one 3D RVE sample shows the compressive load on the top surface, the 

boundary conditions on lower surfaces, and periodic boundary conditions on the other 

three faces that force the nodes on those faces move with each other in a same direction. 
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Table 7.4: Mechanical and geometrical properties of nano-clay particles. 

Nanoclay 
particles 

E (GPa) 
Poisson’s 

Ratio 
Length 
(nm) 

Thickness 
(nm) 

Angle of 
orientation 

Aspect Ratio 

Intercalated 136 0.28 150 - 180 7.0 – 9.0 10 10o o    0.048 A.R. 0.05 

 

In order to compare the results of the RVEs containing elliptical and circular 

particles, the mechanical properties of the circular particles are assumed to be the same 

as the ones in clay particles. This is done because the comparisons of the effect of shapes 

and patterns are desired and not the realistic effect of constituents mechanical properties 

on the overall response of the RVEs. The same boundary conditions that were mentioned 

in Chapter 6, and depicted through Figs. 6.14 and 6.15, are applied to these RVEs. Plane 

strain and 3D-Stress elements are considered for meshing and analyzing the 2D and 3D 

models, respectively. The finite element simulations were conducted under stress control 

tests for compressive loading. Figs. 7.4 and 7.5 illustrate the micromechanical models in 

2D that were simulated to study the viscoelastic response. In spite of the limitations, 2D 

analyses are still a viable approach to gain qualitative insight, rather than to evaluate the 

quantitative response, of the material response at the microstructural level. However, in 

this chapter the results of 2D and 3D models are compared. 
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such determination, it is also necessary to consider the precision of the estimation of the 

favorite property(s). 

The size of one RVE should be large enough as compared to the characteristic 

size of the inclusions so that the size effect of the RVE is negligible. However, in this 

study none of the homogenization techniques has been employed. Henceforth, a number 

of realizations are required to generate different geometrical models. In order to decide 

about the proper statistical representative size for a desired RVE, one should be able to 

conduct several FEA simulations for various random geometrical distribution samples. 

Hence, for this purpose, numerous RVEs with different sizes each containing various 

random distributions of NCLP and also NCRP have been generated and simulated, for 

both 2D and 3D cases. The geometrical RVE models are created with different sizes for 

2D as: 0.5 0.5 ,1.0 1.0 ,1.5 1.5 , 2.0 2.0  and 2.5 2.5  
2μm , and for 3D cases as: 

0.5 0.5 0.5  ,1.0 1.0 1.0  ,1.5 1.5 1.5  , 2.0 2.0 2.0   and 2.5 2.5 2.5  3μm . For the 

realization, several random sets (totally five sets for each size) of distributed particles 

were generated for each size of the 2D and 3D models. By simulating these geometrical 

models, it is shown the idea that there exists just one single possible minimal RVE size, 

must be relinquished. As can be seen in Fig. 7.8, for each type of particle and RVE size, 

there is a range that the desired characteristics deviate in between the range. 
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As can be observed in Figs. 7.10 to 7.12, for both creep and recovery 

simulations, the presence of the elastic inclusions can reduce the amount of creep and 

recovery strains during 30 minutes applying loads or 60 minutes removing loads, 

respectively. Furthermore, it is recognized that for all types of the particles, increasing 

the weight fraction of inclusions can just a little affect the overall creep and recovery 

responses. Here, it should be mentioned that in order to extracting the required numerical 

data, for the purpose of computing and illustrating the average strain, dissipated energy, 

and temperature at a constant stress level of each of the RVEs, the weighted average 

integral over the whole volume of the RVE (Nemat-Nasser and Hori, 1999) can be 

utilized, as 

 ,

1 1 1
d , d , dyy i yy i i i i iv v v

V v D V D v T VT v
V V V

       (7.35) 

where yy , D , and T
 
are sequentially the overall macroscopic response of: the 

strain in the y  direction, the dissipated energy, and the temperature. Also, iV  is the 

volume (or area in 2D models) of the thi  element, and  V  is the volume (or area in 2D) 

of the whole RVE. Therefore, the overall macroscopic behavior can be computed 

through numerical discretized form as 

 
NOEL NOEL NOEL

,
1 1 1

1 1 1
, ,yy i yy i i i i i

i i i
V D V D T V T

V V V
 

  

      (7.36) 
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Fig. 7.10. Comparing creep and recovery strain of 2D NCLPs simulations with respect 
to three different weight fractions and various stress levels. (a) to (c) Creep. (d) to (f) 
Recovery. Stress unit is MPa. 
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Fig. 7.11. Comparing creep and recovery strain of NCRPs (2D-Circle, R1) simulations 
according to three different weight fractions and various stress levels. (a) to (c) Creep. 
(d) to (f) Recovery. Stress unit is MPa. 
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Fig. 7.12. Comparing creep and recovery strain of NCRPs (2D-Circle, R2) simulations 
according to three different weight fractions and various stress levels. (a) to (c) Creep. 
(d) to (f) Recovery. Stress unit is MPa. 
 

The maximum effects of particles for enhancing the viscoelastic response (i.e. the 

reduction in creep strain) of composites may be observed while the RVE is subjected to 

higher stress levels in all types of the inclusions. It is an immediate result of comparing 
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the creep in the minimum ( 15 MPa  ) and maximum ( 40 MPa  ) stress levels in the 

above depicted diagrams. Also, the amount of strain reductions in the creep and recovery 

tests for elliptical shape particles is greater than the ones in the circular particles (in both 

the lowest and highest stress levels). The numerical evaluation and comparison for 

understanding that how much particles can boost the resistance of the composites against 

creep (stress control) loading, is stated in Table 7.5. 

 

Table 7.5: Comparing the enhancement of different particles on creep and recovery. 

Weight 
Fraction 
5.0 % 

Load Creep (30 minutes) Recovery (60 minutes) 

Particle Type Elliptical Circle (R1) Circle (R2) Elliptical Circle (R1) Circle (R2)

15MPa   18.0% 15.4% 15.35% 3.24% 1.88% 1.87% 

40MPa   19.1% 16.29% 16.23% 5.1% 3.2% 3.19% 

 

By simple analogy from Table 7.5, it can be understood that in the same particles 

volume fraction the effects of shape is more important on creep rather than size. 

Furthermore, from the simulations for circular particles, it may be concluded that there is 

almost no difference between the responses of the RVEs containing larger or smaller 

particles circular inclusions. 

Secondly, for the case of 3D models, in Figs. 7.13 to 7.14, the creep and recovery 

responses of the 3D composites (shown in Figs. 7.6 and 7.7) are depicted. Similar to the 

2D cases, six different weight fractions are simulated, but for the sake of brevity, just the 

results of minimum (0.5%), medium (2.0%), and maximum (5.0%) particles weight 

fractions are presented. 



226 
 

 
Fig. 7.13. Comparing creep and recovery strain of 3D NCLPs (3D-Ellipsoid) simulations 
according to three different weight fractions and various stress levels. (a) to (c) Creep. 
(d) to (f) Recovery. Stress unit is MPa. 
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Fig. 7.14. Comparing creep and recovery strain of 3D NCRPs (3D-Spherical) 
simulations according to three different weight fractions and various stress levels. (a) to 
(c) Creep. (d) to (f) Recovery. Stress unit is MPa. 
 

Table 7.6: Different particles enhancement on creep and recovery response. 

Weight 
Fraction 
5.0 % 

Load Creep (30 minutes) Recovery (60 minutes) 

Particle Type Ellipsoidal Spherical (R2) Ellipsoidal Spherical (R2)

15MPa   17.6% 13.6% 3.17% 1.66% 

40MPa   18.34% 14.28% 4.89% 2.81% 
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Similar to Table 7.5 (for 2D), Table 7.6 (for 3D) shows that in the same particles volume 

fraction the effect of shape is more important on creep rather than size. Moreover, 

comparing Tables 7.5 and 7.6 demonstrates that the responses of composite with 2D-

Ellipse are close to 3D-Ellipsoid one. For example, the creep strain in the 2D-Ellipse 

case is 1.031 times (or 3%) greater than the 3D one, for both minimum (15 MPa) and 

maximum (40 MPa) stress level. But the difference is higher for round shape particles, 

i.e. the creep strains in the 2D-Circular particles are approximately 1.136 times (or 

13.6%) greater than the one for spherical shape particles, for both 15 and 40 MPa. This 

result affirms the effect of particles shape on composite response is more important in 

comparison to particles size. 

In Fig. 7.15, the trends of creep and recovery strains in the RVEs including 2D 

and 3D NCLPs are demonstrated. It is apparent that the effect of particles to resist 

against creeping is highest for the RVE that contains 5% of nano-clay particles. Also, for 

both cases, it is obvious that adding 5% of nano-clays may improve the creep resistance 

about 9.5% comparing to the RVE containing 0.5% of the particles. In this figure, the 

diagrams related to 3D models show a slight waviness in responses that can be assigned 

to particles distributions. As explained in Figs. 7.8 and 7.9, when RVE size is 

determined it means that the response of the RVEs with that certain size deviates in a 

range. Therefore, it is probable to capture such deviation in RVEs responses. Also, 

judging against Fig. 7.15 (a) and (b) with (c) and (d) shows the 2D models are less 

sensitive to the particle distribution in comparison to the 3D ones. 
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Fig. 7.15. Comparing final strain values in creep (30 min) and recovery (60 min) 
simulations of: (a)-(b) 2D-Ellipses, and (c)-(d) 3D-Ellipsoids, with respect to different 
weight fractions subjected to various compressive stress levels. 
 

Fig. 7.16 (a) to (c) depicts the non-linear viscoelastic strain distribution in RVEs 

containing elliptical particles. Also, Fig. 7.17 (a) to (c) and (d) to (f) illustrate the 

distribution of the same variable in RVEs including circular particles with two radii: R = 

0.0175 µm and R = 0.032 µm, respectively. In all images in Figs. 7.16 and 7.17, the 

elastic particles are shown in blue navy. The presence of these inclusions produces some 

localized strain field regions. In all the 2D RVEs with vol = 0.5% particles, the localized 

regions are dispersed sporadically. But, by adding more inclusions the localized regions 
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connect to each other and govern more areas inside the RVEs. It is apparent that the 

effect of elliptical particles is more pronounced. An immediate result of the viscoelastic 

strain distributions is that the presence of particles is the source of heterogeneous strain 

distribution, and more inclusions in all cases generate more heterogeneity. 

 

 

     

 

Fig. 7.16. Distribution of non-linear viscoelastic strain ( NVE
yy ), for elliptical NCLP. 

 
 

(a) Wt 0.5% (b) Wt 2.0%

(c) Wt 5.0%



231 
 

    

    

    

Fig. 7.17. Distribution of non-linear viscoelastic strain ( NVE
yy ), for circular NCRP. (a) to 

(c) NCRP (R = 0.0175 µm). (d) to (f) NCRP (R = 0.032 µm). 
 

 

(a) Wt 0.5% 

(b) Wt 2.0% 

(c) Wt 5.0% 

(e) Wt 2.0%

(f) Wt 5.0% 

(d) Wt 0.5%
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In Fig. 7.18, the view cut (cross section) of the 3D RVEs are shown and the 

elastic particles are in blue navy. Comparing Fig. 7.18 (a) to (c) with Fig. 7.16 (a) to (c) 

reveals that in the 3D simulations the ellipsoidal particles show better distribution for 

non-linear viscoelastic strain and less localized regions. For the circular particles, 

through comparing Fig. 7.18 (d) to (f) with Fig. 7.17 (d) to (f), it can be concluded that 

the presence of the 2D circular particles cause localized strain regions inside the 

composites; however, in the 3D spherical particles the localized regions are not formed 

as intense as the one shown in 2D models. In Fig. 7.18, similar to Fig. 7.16 and 7.17, the 

presence of particles is the main source of the heterogeneous strain distribution, and 

more inclusions in all cases produce more perturbation and localization. 
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In the following, in both Figs. 7.19 and 7.20 from (a1) to (c1), the average 

growth of temperature in the composites while subjected to creep tests at different stress 

levels is illustrated. It is evident that adding more particles increases the amount of 

dissipated energy, since they cause heterogeneity in stress and strain fields and 

subsequently in their distribution pattern. To study the dissipated energy, the reader is 

referred to Appendix E. 

 

 

Fig. 7.19. Comparing different aspects of 2D RVEs containing NCLPs, during creep 
tests: (a1) to (c1) average temperature increase. (a2) to (c2) Maximum temperature 
increase in PMMA matrix and whole composites. (a3) to (c3) Maximum amount of 
energy dissipation. 
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Thus, adding more particles generates more heat and the overall temperature of the 

samples increase. Also, Figs. 7.19 and 7.20 from (a2) to (c2) point wisely illuminate the 

amount and growth of the maximum temperature increase inside the RVEs. The images 

from (a3) to (c3) show the maximum calculated energy dissipation inside the RVEs. 

 

 

Fig. 7.20. Comparing different aspects of 2D RVEs containing NCRP (R1), during creep 
tests: (a1) to (c1) average temperature increase. (a2) to (c2) Maximum temperature 
increase in PMMA matrix and whole composites. (a3) to (c3) Maximum energy 
dissipation. 
 

For the case of circular particles, since the differences between the results of the two 

circular particles are negligible; so, for the sake of briefness, the related diagrams for 
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circular particles with larger radius are not presented. Now, in Figs. 7.21 and 7.22, the 

trends of dissipated energy, the average increase of temperature inside the whole RVEs 

and also point wisely in polymer matrix are presented for 3D models. 

 

 

Fig. 7.21. Comparing different aspects of 3D RVEs containing NCLPs, during creep 
tests: (a1) to (c1) average temperature increase. (a2) to (c2) Maximum temperature 
increase in PMMA matrix and whole composites. (a3) to (c3) Maximum amount of 
energy dissipation. 
 

Through comparing these Figs. 7.21 and 7.22 with Figs. 7.19 and 7.20 (for both ellipse 

and ellipsoids, and circular and spherical), it is observable that the amount of the 

generated heat and dissipated energy are less than that in the 2D cases. As was discussed 



237 
 

previously, the strain localization (and also stress localization, which is not demonstrated 

here) is the paramount reason of heterogeneity in the composites which leads to the 

increase of dissipated energy and heat. 

 

 

Fig. 7.22. Comparing different aspects of 3D RVEs containing NCRPs, during creep 
tests: (a1) to (c1) average temperature increase. (a2) to (c2) Maximum temperature 
increase in PMMA matrix and whole composites. (a3) to (c3) Maximum amount of 
energy dissipation. 
 

In this part of the computational results section, the effects of particles on the 

response of RVEs subjected to cyclic loads are briefly studied and presented. At first, in 

Fig. 7.23, for the sake of brevity just one sample of the applied cyclic loads on the 
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generated RVEs is shown. Fig. 7.23 (a) depicts the applied load with the frequency of

10.0 / s . The main formula for expressing stress in terms of time and frequency is 

 0
1

( ) cos( ) sin( )
N

n n
n

t A t B t   


    (7.37) 

Using 1N  , 0 2

  , and 1 2
A 
  , Eq. (7.37) is simplified to  0( ) 1 cos( )

2
t t   . 

Fig. 7.23 (b) also demonstrates the combination of the applied stress and strain in one 

chart. Through performing several simulations, it is checked that after 25 load cycles the 

values of strain reach a saturated level; therefore, in order to find complex modulus the 

RVEs should be simulated up to 25 loading cycles. 

 

 
                                 (a)                                                                  (b) 

Fig. 7.23. (a) Applied cyclic stress. (b) Both applied stress and its strain response. 
 

Then, after simulating each RVE under different frequencies, the complex modulus can 

be simply found through the next procedure. After 25 cycles, as seen in Fig. 7.24, the 

value of strain in the pinnacle (or base) of the strain response curve should be picked and 

then the complex modulus is: *
avgE   . In the simulated cases, the values of strain in 

different frequencies were obtained, when the maximum stress (20 MPa) occurred. 
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Fig. 7.24. Comparing applied stresses and strain responses in the saturation region of 
strain, according to different frequencies. RVEs contains 5 vol% of NCLP. 
 

Fig. 7.25 shows the trend of complex modulus changes for each composite versus the 

cyclic loading frequencies. For the purpose of understanding the amount of development 

complex modulus of these composites, 3 (particles type) × 6 (frequency) × 6 (weight 

fraction) = 108 simulations have been accomplished just for the 2D models. The 2D 

models are the ones demonstrated in Figs. 7.4 and 7.5. As can be seen in the diagrams of 

Fig. 7.25 (a) and (b), the size of the circular particles does not affect the complex 

modulus, and just volume fraction governs the response. However, in diagram (c) that 

relates to the RVEs containing elliptical particles, the complex modulus has been 

improved a little, which can be attributed to the shape of elliptical inclusions. 
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             (a) Circular particles (R2).                              (b) Circular particles (R1). 
 

 
(c) Elliptical particles. 

Fig. 7.25. Comparing composites complex modulus versus cyclic loads frequencies, for 
2D RVEs. 
 

The same outcome can be concluded from Fig. 7.26 (a) and (b) for the 3D models. The 

complex modulus of diagram (b) has been slightly enhanced in comparing to diagram (a) 

which is related to the shape of the ellipsoidal inclusions. For simulating the 3D models 

in Fig. 7.26 (a) and (b), 2 (particles type) × 6 (frequency) × 6 (weight fraction) = 72 

simulations have been accomplished. Here, the 3D models are the ones shown in Figs. 

7.6 and 7.7. 
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          (a) Spherical particles (R1).                           (b) Ellipsoidal particles. 

Fig. 7.26. Comparing composites complex modulus versus cyclic loads frequencies, for 
3D RVEs. 
 

From Fig. 7.23 and 7.24 it can be concluded that even though the amount of complex 

modulus in 2D cases are higher than the ones in 3D models, the magnitude of 

enhancement of 3D ellipsoidal particles, with respect to 3D spherical ones, is higher than 

the magnitude of enhancement of 2D ellipses with respect to 2D circular particles. For 

example in Fig. 7.23 the complex modulus enhancement of ellipse particles regarding to 

circular ones, for 5 vol%, is about 145 MPa. However, according to Fig. 7.24, the 

modulus enhancement for the 3D RVEs is about 210 MPa. 

 

7.6 Summary 

The nature of the shape and distribution of the filler particles were shown that 

affect the macroscopic response of particulate filled composites. However, it is observed 

that the size of the circular particles did not affect the response of both creep and 

recovery, and also cyclic loadings. In all types of loadings, the obtained results 

demonstrate that the higher modulus of the nano-composites in cyclic loads and decrease 
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in creep strains is a direct consequence of the volume fraction of constituents. But, in the 

same volume fraction, the shape of particles (elliptical and circular) affects the behavior. 

Moreover, the maximum effect of those types of particles for enhancing the 

viscoelastic response of the composites is observed while the RVE is subjected to higher 

stress levels. Adding more particles is also found to almost linearly affect the 

viscoelastic responses of all the simulated composites. 

It is shown that the radius of circular particles has no outcome on either creep-

recovery (loading-unloading) or complex modulus (cyclic loading). Also, it is shown 

that the complex modulus in 2D simulations is higher than their counterpart in 3D 

models. Furthermore, the magnitude of enhancement of 3D ellipsoidal particles, with 

respect to 3D spherical ones is shown higher than the magnitude of enhancement of 2D 

ellipses with respect to 2D circular particles. 

There is no significant increase in the composite complex modulus with respect 

to adding more particles to the RVEs. It may relate to the fact that the cyclic loads have 

been measured at lower strain and stress levels at room temperature. Further, since 

PMMA is a glassy amorphous polymer, and it is mostly elastic in the room temperature; 

hence, the complex modulus does not change a lot in these conditions. The pure viscous 

component of the viscoelastic properties means that the enhancement in modulus is 

analogous to the increase of viscosity. 

Calculations show the average temperature increase in the simulated RVEs is 

about 1.0 to 1.2 C for 2D and 0.8 to 1.0 C for the 3D models, even though in some points 

(elements) the temperature has increased up to 4 C. It is also obvious that the elliptical 
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particles dissipate more energy that increases the internal generated heat in comparison 

to circular ones. An immediate result of the viscoelastic strain distribution in 2D models 

illustrates that adding more inclusions merges the localized viscoelastic regions and 

affects more areas inside the RVEs. On the other hand, the connection between localized 

regions does not occur in the 3D models with lower volume fractions, and is observable 

just in the highest volume fraction (5 vol%). It is achieved that the effects of the 

elliptical (2D) and ellipsoidal (3D) particles are more noticeable. 
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CHAPTER VIII 
 

VIRTUALLY INVESTIGATING ELASTIC RESPONSE OF CNT-

BASED POLYMER COMPOSITES IN SMALL DEFORMATION 

RANGE 
 

8.1 Introduction 

Carbon nanotubes (CNTs) have been the main research focus in composite 

materials when they were discovered by Iijima (1991). Now, they are being investigated 

for many purposes and applications in conventional and new areas, such as: lightweight 

structural composites, electronics, field emissions, and nano-mechanical devices, 

actuators, medical applications and nano-robotics (Qian et al. (2002), Thostenson et al. 

(2001), Baughman et al. (2002)). Due to CNTs extremely high stiffness, strength, 

resilience, as well as superior electrical and thermal properties, they may become ideal 

reinforcing materials for the new class of composites. 

Numerous experimental studies and simulations have been performed to 

investigate the properties of CNT reinforced composites. Empirical models have been 

employed to compute the elastic properties of single and multilayered nanotubes and it 

has been proven that the shear and Young’s modulus are comparable to that of diamond 

(Lu, 1997). CNT/Polystyrene composites were characterized by (Qian et al., 2000) and it 

was shown that adding 1 vol% CNTs in PS results to 25% increase in the tensile strength 

and an increase in the elastic stiffness of the composite in a range of 36% and 42%. 

Using short-fiber composite theory have demonstrated that adding 10 vol% of the CNF 
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(carbon nano fibers) increases the elastic modulus which is equivalent to the increase in 

modulus by adding just 1 vol% of CNTs (Thostenson et al., 2001). 

CNTs are extremely small in size, and their strengths are 20 times that of high 

strength steel alloys, half as dense as aluminum and also having high current carrying 

capacities approximately 1000 times that of copper. Investigating the effects of large 

aspect ratios of these cylinders  (i.e., length to diameter ratio as large as 102 to 105) is a 

field of interest (Gade, 2005). CNTs diameters are in the nanometer scale and their 

length can be even in nano up to micrometer order (Smalley and Colbert, 1996). CNTs 

are generally classified as single-walled carbon nanotubes (SWNT) and multi-walled 

carbon nanotubes (MWNT). SWNT is a hollow structure formed by covalently bonded 

carbon atoms and it looks like a thin graphene sheet rolled into a cylindrical shape 

(Gade, 2005). Both ends of CNTs can be sealed using end caps, and are called as 

hemispherical caps. These SWNTs typically have diameters ranging from 0.7 to 20.0 nm 

with thickness of 0.14 to 0.34 nm (Ruoff and Lorents, 1995) and the experimental and 

theoretical results show that their Young’s modulus can reach up to 1 TPa (Salvetat et 

al., 1999a; 1999b; Zhou and Shi, 2002). 

The CNTs load carrying capacities in composites have been demonstrated in 

many preliminary simulations (Chen and Liu, 2004; Liu et al., 2005; Liu and Chen, 

2003) and experiments (Qian et al., 2000; Schadler et al., 1998; Wagner et al., 1998). 

Although significant efforts (Bower et al., 1999; Qian et al., 2000; Schadler et al., 1998; 

Xiao and Zhang, 2004) have been accomplished, characterizing the mechanics in CNT-

based nano-composites directly in that scale is still a perplexing complex task. On the 

other hand, simulations of discrete (Mokashi et al., 2007) and continuum based models 
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have provided useful perspectives and insights for better understanding the mechanics of 

the nano-composites. Since the discovery of CNTs, attentions have been focused on their 

remarkable stiffness, high strength-to-weight ratios, toughness, and other mechanical 

properties. But, there are many issues that should be considered and studied before the 

potential of CNT-based composites can be employed in real engineering requests. 

Actually, the most amazing property of CNTs is their incomparable increase in stiffness 

when combined with other materials, and it has been proved experimentally by several 

researchers (Thostenson et al., 2001). Several techniques have been proposed to 

understand the mechanical properties of the composites. From which, the computational 

approaches play a significant role in the characterization of the nano-composites. Yet, 

gaining these outstanding characters even at macro-scale makes considerable challenges. 

To better comprehend the ways for obtaining these requirements, extensive experimental 

and virtual test studies are required. 

At nano-scale, the analytical models are almost limited to simple geometries. 

Also conducting such experimental tests to evaluate their behavior are very expensive. 

However, modeling and simulating the nano-composites may be achieved in a cost 

effective manner through using even one powerful desktop computer. One of the 

interesting methods is Molecular Dynamics (MD) simulations that have been shown to 

be a brilliant scheme in characterizing nano-composites behavior. MD approach at the 

molecular level requires a lot of memory, CPU-hours and catches on a computer to solve 

even one semi large-scale problem. Therefore, MD is limited to just small nano-scale 

samples because of its extreme computational costs. This significant obstacle leads the 

development and usage of other alternate approaches for characterizing and evaluating 
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the CNT-reinforced composites at micro-scale. MD simulations can be used for small-

scale models, whereas continuum mechanics (CM) is a typical approach used for large-

scale models. The CM method can overcome the abovementioned issues, since it is 

computationally effective and easier for characterizing large-scale models. The two most 

commonly used numerical techniques in CM are the FEM and BEM (finite and 

boundary element method). In this chapter, the continuum mechanics approach using 

FEM, which is one of the alternative methods, is adopted to assess the effective modulus 

of the CNT-based composites. It is successfully validated using the rule of mixtures 

(analytical) and MD methods. 

The effects of waviness of CNTs on overall response of these composites are 

studied here for the first time. It is also shown that long CNTs reinforced composites 

produce higher effective modulus compared to the ones with short CNTs. The outcomes 

are found to be in good agreement with the obtained result of using MD and analytical 

approaches. Different elements for modeling the CNTs are compared to illustrate which 

geometries and elements can be used for better modeling the CNTs inside a composite. 

Moreover, many large-scale CNT-based models are developed and simulated in this 

work through using 3D solid elements. In these models, different possible mixtures of 

CNT-based composite scenarios are numerically investigated. 

In many researches (Fu et al., 2008; Tjong, 2006; Xie et al., 2005), it has been 

claimed that outstanding properties can be achieved by adding a little amount of CNTs 

to a polymer matrix, indicating these fibers have the potential to be as perfect reinforcing 

materials for polymers. However, the results of the simulations for RVEs containing 

even a single CNT (for both hollow and solid CNTs) illustrate that a little bending and 
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curvature in the geometry of a CNT can cause significant reduction in the elastic 

modulus of the composite. Also, it is shown that the amount of the matrix thickness 

around a fiber has a profound effect on Young’s modulus of the composites. 

Furthermore, the amount of CNTs Poisson’s ratios is studied to determine the effect of 

this material parameter on the overall responses of such RVEs. 

8.2 Computational Methods for Assessing CNT-Reinforced Composites 

In order to evaluate the outstanding effective properties of nano-composites at 

the nano-scale, MD simulations (Alder and Wainwright, 1957), continuum mechanics - 

FEM, constitutive modeling techniques (Odegard et al., 2003) are some of the most 

popular techniques used in this research field. In the following, each of the methods will 

be explained briefly, and afterwards, at first some 3D simple models the same as what 

were developed by Griebel and Hamaekers (2004) for using molecular dynamics 

approach have also been developed. The FEM models developed here are to demonstrate 

and prove that the continuum mechanics framework can be a substantial substitute for 

calculating the overall responses of nano-composites. 

8.2.1 Molecular Dynamics (MD) 

The elastic moduli of nanotube/polymer composites were examined by Griebel 

and Hamaekers (2004) through molecular dynamics approach. The stress-strain curves 

were derived from the simulations on a composite with single-walled CNTs embedded 

in polyethylene matrix, for the application of external stresses. Besides, the results from 

the MD simulations for the Young’s modulus of a CNT/polyethylene composite were 



249 
 

compared with the rule of mixtures predictions for long, continuous CNTs. Also the 

extended rule for short, fully embedded CNT in polyethylene matrix was studied. 

 

 

 

Fig. 8.1. Front and side view of finite tube within the unit cell containing one CNT in 
polymer matrix system: (a) Long CNT, (b) Short CNT (Griebel and Hamaekers, 2004). 
 

8.2.2 CNT Constitutive Model 

 Frankland et al. (2003), Odegard et al. (2002), and Odegard et al. (2003) have 

developed a new technique for evolving constitutive models for composite materials 

reinforced with SWNT, based on an equivalent-continuum modeling procedure. This 

scheme considers the atomistic interactions at the nano-scale, and also the interfacial 

properties of the CNTs and the surrounding matrix by using MD simulations. 

(a) 

(b) 
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8.2.3 Continuum Mechanics (CM) 

A continuum mechanics method using FEM was introduced in evaluating the 

effective material properties of CNT-based composites by Fisher et al. (2003) and Liu 

and Chen (2003, 2007). These numerical examples that are based on 3D RVEs 

containing both long and short CNTs were developed utilizing the FEM and BEM 

approaches. These models have shown significant load carrying capacities of the CNTs 

in a polymer matrix. Also, these results proved to be in excellent agreement with the rule 

of mixtures (ROM) results and are reported to be consistent with some of the 

experimental results in literature. 

The results reported in this chapter answer and illustrate the efficiency of 

continuum mechanics using the FEM for nano-scale RVE models as well as for large 

scale 3D models containing numerous CNTs in a polymer matrix, for all sorts of CNT 

morphologies for the first time, such as: straight, random rods, and curved shape CNTs. 

The computational outcomes of modeling CNT based composites will be reviewed in the 

following sections. Also, the strength of materials (ROM) technique for estimating the 

response of fiber-reinforced composites and the extension of this method for the nano-

composites reinforced with long and short CNTs are discussed in the next section. In 

continuum mechanics (CM) concept, a material is considered as a continuous media, 

which is a collection of material points interconnected by inter-atomic forces. In simple 

words, continuum mechanics method deals with Newton’s laws of motion and the 

governing principles are conservation of mass, momentum, and energy (Xu and Liao, 

2001). Most of continuum problems are focused on the macroscopic characters of 
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materials rather than the microscopic properties. Even though the CM theory has been 

proposed to study the macroscopic response of materials, it is shown to be reasonably 

accurate for studying the micro- and nano-mechanics in which the typical length scales 

approach are needed, but it is still larger than those of individual atoms. Even though the 

nature of CM and MD are totally different, here it is assumed the material is 

homogeneous and continuous in its character. 

The first main task is to employ 3D elastic solid elements that replace beam and 

shell elements for modeling composites containing CNTs. This is fundamental to ensure 

the accuracy and compatibility between the CNTs and the polymer matrix in the 

composite. For this issue, SWCNTs have been usually modeled as 3D thin shells, but the 

shell thickness and Young’s modulus reported in literatures exhibit a large scattering 

range. The order of error to approximate SWCNTs as thin shells was studied by Peng et 

al. (2008) through an atomistic-based finite-deformation shell theory. In their 

methodology, the shell thickness and Young’s modulus were avoided, but it linked the 

tension and bending rigidities directly to the inter-atomic potential. Also, they showed 

for the second order of error, the tension and bending rigidities of SWCNTs can be 

modeled by an elastic orthotropic thin shell, but the thickness and elastic modulus 

cannot, and just for the first order of error, a constant shell thickness can be defined, and 

SWCNTs can be modeled as an elastic isotropic thin shell. The consistent Young’s 

modulus also fluctuates by an order of magnitude, which is so called the Yakobson’s 

paradox (Shenderova et al., 2002). 
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8.2.4 Rule of Mixtures Theory for Composites 

8.2.4.1 Long Fibers 

Predicting the effective material properties of a CNT-composite based on the 

concepts of the strength of materials is employed by simple analytical expressions which 

is the ROM. The ROM and its generalized form for some cases of particle- or fiber-

reinforced composites have been successfully applied in the past for composites. Yet, 

this theory is not accurate for evaluating complex geometries and also interfacial stress 

(the load transferring through the interface), but it has been found to be simple, efficient 

and accurate for predicting the effective material constants (Young’s modulus, Poisson’s 

ratio) in just the axial and transverse direction of the RVEs. It should be recalled that 

applying load to the same direction of fibers axis is equivalent to a system of materials 

that are parallelly attached, and studying the transverse direction is equivalent to a series 

of materials, which can be predicted through utilizing the conceptual theories of the 

strength of materials. The first analysis delivers the upper bound of the response and the 

latter one gives the lower bound. In the model used here, there are certain assumptions 

that should be made before developing the rule of mixtures expression: 

 CNTs are uniform, parallel and continuous. 

 Perfect bonding between CNT and matrix is considered. 

 Load produces same longitudinal strain in CNT, matrix, and the whole composite. 

According to these assumptions, the equivalent Young’s Modulus of the composite can 

be derived and explained as 

  Comp CNT CNT Matrix CNT1E E V E V    (8.1) 
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8.2.4.2 Short Fibers 

 Salvetat et al. (1999a) demonstrated through MD simulations, and Ruoff and 

Lorents (1995) showed by continuum mechanics simulations that the effective modulus 

of the composite using short CNTs is far less compared to the increase in modulus using 

continuous long CNTs. The short CNT-reinforced composites that are analyzed in this 

chapter show they are not being as strong as the composites containing long continuous 

CNTs; therefore, these constituents are not recommended to be used for critical 

structural applications. The effective modulus, CE , for a short fiber reinforced 

composite, that is illustrated in Fig. 8.3, using the extended rule of mixtures (EROM) by 

Chen and Liu (2004) is expressed as

 

 2 2
C M

e CNT

M CNT M

, 4 , i
LE A a A A rL L A

E E A

   


 (8.2) 

 

 

Fig. 8.3. Short fiber reinforcing inside a composite (Chen and Liu, 2004). 
 

The EROM, Eq. (8.2), is applied to assess and validate the FEM simulations for the 

effective Young’s modulus of short CNT reinforced nano-composite models, when the 

applied load and fibers are in the same direction. Also, the computations and estimations 



255 
 

based on these analytical equations can illustrate that how much is the difference 

between the effective modulus of composites containing straight CNTs (as upper bound) 

and the one contains curved shape fibers, while the volume fraction of the fibers are the 

same. 

8.3 Developing FEM Models for CNT-Reinforced RVEs 

This section discusses the development of different scenarios of nano-composites 

with various volume fractions and geometries (aspect ratios and distribution pattern) for 

evaluating the overall response of such composites. The average effective Young’s 

modulus of the CNT reinforced composite is of certain interest and it has been calculated 

and assessed using numerical methods. Here, in order to characterize the virtually 

generated RVEs for the nano-composites, finite element method using ABAQUS 

commercial software tool is employed. The obtained results from analyzing the 

developed models in this chapter have been successfully validated using molecular 

dynamics (just for some cases) and other analytical approach ROM. 

The preliminary results obtained in this study can be compared with the available 

experimental and MD results from similar models reported in the literature (Griebel and 

Hamaekers, 2004; Liu and Chen, 2003). In most of the studies performed in literatures, 

CNTs are considered as homogeneous and isotropic materials and are represented by 

continuum beam, shell, and 3D solid elements (Chen and Liu, 2004; Govindjee and 

Sackman, 1999; Liu and Chen, 2003; Qian et al., 2003; Sohlberg et al., 1999). Here, 

before simulating large scale RVEs, the main parameters and concerns about modeling 

CNTs are studied. 
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8.3.1 Investigating RVEs with One CNT 

Depending on the problem characterization and structure (i.e., material 

properties, boundary conditions and geometry) two or three dimensional studies can be 

performed. In fact, 2D analysis has been mainly used to reduce the computational 

resources. Although 2D simulations are less time consuming, it is also less accurate. 

However, a 3D analysis is computationally time consuming approach, and this type of 

modeling is relatively more precise than the 2D analysis. 3D models are used in 

situations where 2D degeneration model does not sound physical or is not possible. 

Since a sample of 2D fibers is planar and they intersect with each other, which does not 

occur in reality; therefore, 3D CNTs are modeled. In the following simulations, the 

matrix is polyethylene and the CNTs are considered as isotropic materials. The 

geometrical and material parameters for creating and analyzing these RVEs are stated in 

Table 8.1 (Gade, 2005). 

 

Table 8.1: Elastic properties and morphological parameters for the CNTs and matrix. 

CNT 
Length (nm) 

Inner Radius 
(nm) 

Thickness 
(nm) 

Aspect 
Ratio 

Vol (%) E (MPa) Poisson's Ratio

11.25 0.5 0.34 6.696 6.5 430850 0.23 

 

Matrix Length 
(nm) 

Width × Height 
(nm²) 

Matrix Volume 
(nm³) 

E (MPa) 
Poisson's 

Ratio 

11.25 4.8 × 4.8 259.2 614.2 0.485 
 

In almost all the RVEs generated by other researchers (Griebel and Hamaekers, 2004; 

Liu et al., 2005; Liu and Chen, 2007; Odegard et al., 2003) in the field of CNT/polymer 
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nano-composites the long CNTs have been inserted in a matrix from one end to the other 

end in the longitudinal direction. But here for the first time, curved CNTs are studied to 

observe how their curvatures affect the overall performance of a composite. In this 

section, the main strategy is to comprehend the effect of hollow and solid CNTs, matrix 

thickness, Poisson’s ratio, and CNT curvature on the elastic response and behavior of 

CNT-reinforced composites before exploring large-scale complex models. Fig. 8.4 

depicts different virtual case studies for better understanding the above mentioned items. 

The results of simulating such models are discussed in the following. 

 

        

        

        

Fig. 8.4. RVEs containing one hallow or equivalent solid CNT, with different segmental 
bending angles; Straight: (a1)-(a2) α=0°, Curved: (b1)-(b2) α=5°, (c1)-(c2) α=25°. 

(a1) (a2) 

(c1)

(b1) (b2) 

(c2) 
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One of the main arguments in the literature is the value of Poisson’s ratio for 

CNTs. Its range has been mentioned from 0.05 (close to zero) to 0.23. Therefore, several 

simulations were conducted to demonstrate the effect of this material parameter on the 

RVE’s response. In the diagrams shown in Fig. 8.5, comparisons between different 

approaches (MD, ROM, and FEM) for analyzing these RVE responses are presented. It 

can be observed that even though the natures of the mentioned methods are different, the 

total response of the RVE with one straight hollow CNT, Fig. 8.4 (a1), is in the same 

range. For the case of ROM, the differences can be attributed to the assumptions of the 

ROM method, since it especially does not consider the Poisson’s ratio, and it almost 

over-estimates the elastic behavior. For the MD case, Fig. 8.1 (a), the differences can be 

attributed to the nature of the MD method (which is based on inter-molecular forces) and 

the FEM which considers the material as homogeneous solid domains, and the boundary 

conditions which affect the response. The outcomes show the response from FEM is in 

between the ROM and MD methods, and Table 8.2 shows the elastic modulus computed 

through FEM is almost 7% higher than the one obtained by MD, and 7% less than the 

ROM. Such molecular model was simulated by Zhou and Shi (2002), and its value is 

used here to check and assess the FEM method. The simulations related to Fig. 8.4 are 

presented in Fig. 8.5 and Fig. 8.6. In Fig. 8.5 (a1) to (c1) the Poisson’s ratio is 0.05  , 

and in (a2) to (c2) it is 0.23  . These simulations show that for all cases (straight, 

slightly curved, and highly curved), the stress distribution for both Poisson’s ratio values 

are the same in either polymer matrix or the CNT. This means that Poisson’s ratio does 

have negligible influence on the whole response of these RVEs. As shown in Fig. 8.5 

(c1) and (c2), because of the highly curved shape of the fiber, the cross-section to view a 
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proper cut of the fiber does not pass through the axis of the fiber; therefore, in both Figs. 

8.5 and 8.6 (c1) and (c2), the cross section of the fiber is not as perfect as the ones in 

(a1)-(a2) and (b1)-(b2). 

 

  

  

  

Fig. 8.5. Von Mises stress (MPa) in RVEs with one hollow CNT, and different segmental 
bending angles (α); Straight: (a1)-(a2) α=0°, Curved: (b1)-(b2) α=5°, (c1)-(c2) α=25°. 
 

Then, the hollow CNTs are replaced by solid fibers, to see whether the equivalent solid 

CNTs can represent the same behavior as thin hollow CNT or not. The stress contours, 

in Fig. 8.6 are in one to one relation with the images in Fig. 8.5; and although the stress 

distribution in the solid and hollow CNTs are different (and they should be), the average 

(a1) 

(c1) 

(a2)

(b1) (b2)

(c2)
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of the von Mises stress in the polymer matrices is almost the same. The averages of the 

stresses in the matrices have been computed by Python scripting code in ABAQUS, for 

both hollow and solid CNTs and the results are presented in Table 8.2. 

 

  

  

  
Fig. 8.6. Von Mises stress (MPa) in RVEs with one solid CNT, and different segmental 
bending angles (α); Straight: (a1)-(a2) α=0°, Curved: (b1)-(b2) α=5°, (c1)-(c2) α=25°. 
 

Table 8.2: Comparing the average of von Mises and zz  in the RVEs matrices. 

 Average von Mises stress (MPa) Average zz  stress (MPa) 

CNT Type o0   o5   o25   o0   o5   o25   

Hallow 31.11 68.55 44.96 32.53 105.67 46.41 

Solid 31.34 66.50 43.10 33.76 101.89 44.01 

(a1) (a2)

(b1) 

(c1) 

(b2)

(c2)
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Moreover, comparison of elastic response of the RVE with hallowed CNT, Fig. 8.4 (a1), 

with other methods is presented here in Table 8.3. Such comparisons are presented just 

to show that how much FEM can be effective to model the CNT-based nano-composites. 

Besides, in the depicted diagrams in Fig. 8.7, it is conceivable that a little curvature in 

the CNTs consequences to a remarkable reduction in the elastic response of the RVEs. 

 

Table 8.3: Young’s modulus achieved by different methods. 

 MD FEM ROM 

E (MPa) 23395.0 25017.3 26824.5 

Increase (%) 0 6.9 14.7 

 

 

Fig. 8.7. Comparing results achieved through MD, ROM, and FEM methods for RVE 
with one hollow straight CNT, and effect of curvatures on performance. 
 

Trends of stress-strain curves for both hallow and equivalent solid CNTs with different 

Poisson’s ratios and different curvatures are also shown in Fig. 8.8. 
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Fig. 8.8. Effects of curvature and Poisson’s ratio on overall elastic modulus (MPa). 
 

These diagrams indicate the CNTs can be modeled as either thin 3D hollow tubes 

or 3D full solid elements. The stress distributions in Fig. 8.5 and Fig. 8.6, the average 

stresses in Table 8.2, and also stress-strain curves for solid and tubular shape CNTs in 

Fig. 8.8; altogether lead to this conclusion that the CNTs can be considered as both 

hollow and equivalent solid, and also the Poison’s ratio of the CNT does not affect the 

response of the composite in the small strain range for just finding the elastic modulus. 

One of the items that should be investigated is the effect of the matrix thickness 

as a cover around an inclusion. Therefore, the previously generated models in Fig. 8.4 

(a1) to (c1) were reconstructed such that there is more matrix coverage in front of the 

longitudinal axis of the CNTs, but the volume fractions of the CNTs are the same as 

before. Table 8.4 gives the matrix parameters, and the CNT parameters are the same as 

presented in Table 8.1. 

 

Table 8.4: Morphological and elastic parameters for the RVEs with thicker matrix. 

Matrix Length 

(nm) 

Width × Height 

(nm²) 

Matrix Volume 

(nm³) 
E (MPa) 

Poisson's 

Ratio 

13.5 4.4 × 4.4 259.2 614.2 0.485 
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Fig. 8.9. RVEs containing one hollow CNT, with thicker matrix cover in front of the 
CNT. Different bending angles; Straight: (a) α=0°, Curved: (b) α=5°, and (c) α=25°. 
 

The outcomes of the simulations for the recent models are presented in Figs. 8.10 and 

8.11. Fig. 8.10 shows stress distribution in the matrix and the hollow CNTs, and it can be 

observed that the amounts of the average stress in matrices are in the same range and 

order. 

Fig. 8.10. Von Mises stress (MPa) in RVEs with more polymer cover along fibers axis 
containing one hollow CNT, with different bending angles ( ). Straight: (a) α=0°. 
Curved: (b) α=5°, and (c) α=25°. 

 

(b)(a) (c)

(a)

(b)

(c)
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Fig. 8.11. Trends of elastic modulus (MPa) of RVEs with more matrix cover. 
 

Also, Fig. 8.11 demonstrates the trend of the stress-strain curves with respect to the 

CNT’s bending and curvature. This diagram illustrates that the elastic modulus of the 

composite with straight CNT (Fig. 8.9 (a)) is 25% (or 1.25 times) greater than the RVE 

with a little curvature (Fig. 8.9 (b)) and is 118% (or 2.18 times) greater than the modulus 

of the RVE with highly curved CNT (Fig. 8.9 (c)). Comparing this diagram, Fig. 8.11, 

and the diagrams in Fig. 8.8 prove a significant reduction in the Young’s modulus when 

the matrix cover in front of the CNTs are thicker. This numerical comparisons and 

evaluations between the elastic responses of these RVEs with different scenarios are 

presented in the diagrams in Fig. 8.12. 
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Fig. 8.12. Comparing effect of less and more matrix covers around CNTs on overall 
response of RVEs. (L.C. = Less Cover, and M.C. = More Cover). 
 

The abovementioned simulations displayed in Fig. 8.5, Fig. 8.6, and Fig. 8.10 along with 

the diagrams shown in Fig. 8.8, Fig. 8.11, and 8.12 reveal that the amount of matrix 

thickness around or in front of the CNT constituents in a composite has profound effect 

on the overall behavior of the RVE sample. The volume fractions of the models in Fig. 

8.5 and 8.10 are equal, but because the models in Fig. 8.10 have thicker matrix covers in 

front of the tip of the CNTs; therefore, the Young’s moduli have diminished a lot. If the 

matrix is not thick, most of the applied load transfers to the CNTs and stress field in 

these constituents are activated earlier, and the overall response of such RVE is closer to 

the behavior of the inclusions. That is the main reason why the elastic modulus of the 

RVEs in Fig. 8.4 (a1) and (a2) are much higher than the ones presented in Fig. 8.9 (a). 

In the study conducted by Gade (2005) and Liu and Chen (2007), very short 

CNTs were also considered, which are re-simulated in this work just to understand the 

FEM capabilities range for analyzing that scale. For this purpose, one RVE model 

containing a short hollow CNT with end caps is constructed here (see Fig. 8.1 (b)). The 
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required geometrical parameters are given in Table 8.5, and for better understanding 

some parameters, the reader is referred to Fig. 8.3. The generated model is shown in Fig. 

8.13. It should be mentioned that the applied loads in all RVE cases in this chapter are 

aligned in ‘Z’ direction. 

 

Table 8.5: Elastic properties and geometrical parameters for short CNT and the matrix. 

CNT Length 
(nm) 

Inner 
Radius (nm) 

Outer 
Radius (nm)

Remaining 
Length (nm)

Aspect 
Ratio 

Vol (%) E (MPa) 
Poisson's 

Ratio 

5.0 0.5 0.84 6.25 2.976 2.8 430850 0.23 

 

Matrix Length 
(nm) 

Width × Height 
(nm²) 

Matrix Volume 
(nm³) 

E (MPa) Poisson's Ratio 

11.25 4.8 × 4.8 259.2 614.2 0.485 

 

 

Fig. 8.13. RVE containing one short hallow CNT, with straight structure. 
 

  
Fig. 8.14. Mises stress (MPa) in RVE with short hallow CNT: (a) 0.05  , (b) 0.23  . 

(a) (b)
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Elastic response of the recent models shows the effect of Poisson’s ratio is also negligible 

in the short CNT cases. These elastic modulus are compared with the MD model and 

extended rule of mixture (EROM), Eq. (8.2), and illustrated in Fig. 8.15. The 

assessments show the modulus achieved by FEM and EROM methods are almost 25% 

less than the one simulated by MD method. Hence, based on the result of the short and 

long CNTs, the Young’s Modulus from MD method is higher than the FEM technique. 

 

 
Fig. 8.15. Comparing short CNT responses through FEM, MD, and EROM. 

  

8.3.2 Analyzing Additional Factors Affecting RVEs with One CNT 

In this section, CNTs with higher aspect ratios are analyzed, and the differences 

between modeling the CNTs through different 3D elements are studied. Then the effect 

of the element types on the elastic response is shown. At first, long straight CNTs are 

placed in a long box shape matrix, with proper matrix cover in front of the fiber axis. 

The cover is considered because the load should be applied to the surface of the matrix 

and not directly to the CNTs, as explained in the previous section. The matrix is PMMA 



268 
 

and the CNTs are Multi-walled nanotubes (MWNT). The geometrical parameters 

required for generating the RVEs and mechanical properties for analysis are given in 

Table 8.6. In this table, the aspect ratio and volume fraction is measured based on the 

equivalent full solid state. 

 

Table 8.6: Elastic properties and morphological parameters for short CNT and matrix. 

CNT 
Length (nm) 

Inner 
Radius (nm) 

Outer 
Radius (nm)

Matrix 
Cover (nm)

Aspect 
Ratio 

Vol (%) E (MPa) 
Poisson's

Ratio 

580 5 5.15 10 ≈ 58 8.43 1000 0.05 

 
Matrix 

Length (nm) 
Width × Height

(nm²) 
Matrix Volume 

(nm³) 
E (MPa) Poisson's Ratio

600 30 × 30 54×104 2500 0.35 

 

 

           

Fig. 8.16. Illustration of RVE with one straight CNT. (a) Full 3D perspective view. Front 
view of RVE with different geometry: (b) Full solid, (c) Thin solid, (d) Hollow shell. 
 

Then, the models required for evaluating different 3D elements are generated and 

demonstrated in Fig. 8.16. After simulating the mentioned RVEs, the contours of stress 

(a) 

(b) (c) (d) 
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This means when CNTs are exactly aligned or not aligned in the direction of the applied 

force on the RVE, each of the above mentioned elements can be employed to model the 

CNTs. In this part of the study, the main focus is placed on probing the effect of 

curvature on RVEs including one long CNT. For this purpose, four models are 

generated. Fig. 8.22 (a1) to (d1) show the cross sections of the RVEs with different 

curvatures, and Fig. 8.22 (a2) to (d2) which are in one to one relation with Fig. 8.22 (a1) 

to (d1), depict 3D perspective view of the same RVEs.  

 

Table 8.7: Morphological and elastic parameters for short CNT and the matrix. 

CNT 
Length (nm) 

Radius 
(nm) 

Bending Angle Aspect Ratio Vol (%) E (MPa) 
Poisson's 

Ratio 

1200 5.0 25 25o o   120 0.758 1000 0.05 

 

Matrix Length 
(µm) 

Width × Height
(µm²) 

Matrix Volume 
(µm³) 

E (MPa) 
Poisson's 

Ratio 

1.3 0.1 × 0.1 13×10-3 2500 0.35 

 

One is noted, since importing highly curved 3D fibers with circular cross section to the 

FEM software ABAQUS has many technical issues; therefore, as seen in Fig. 8.22, the 

cross sections of the fibers are polygon. Such cross section provides more stable 

geometry while extrusion through a highly curved 3D spline. However, since the area of 

a circle is greater than the area of a polygon with the same exterior radius (e.g, if octagon 

is used, 10% reduction in cross section area takes place); therefore, in order to gain the 

same area for the cross section and consequently the proper volume for a 3D fiber, the 

circumferential radius of the polygon should be proportionally increased and matched. 
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Fig. 8.22. RVEs containing one CNT with high aspect ratio (≈120) and different bending 
angles: (a1)-(a2) α=0°. (b1)-(b2) α=2°. (c1)-(c2) α=5°. (d1)-(d2) α=25°. 
 

The stress distribution contours of these generated RVEs are shown in Fig. 8.23. It is 

observed that the middle part of the fibers carry more load comparing to the end 

segments. As proved previously, the straight segments of each fiber in the direction of 

applied load have the capacity to carry more loads. Besides, Fig. 8.23 (a) to (c) reveals 

(b2)

(c2)

(d2)

(a2)

(a1) (b1) (c1) (d1)
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that when a fiber bends, the maximum stress transferring through the segments parallel 

to the direction of applied load are higher than the fiber which is completely straight. 

The amount of stress in the fiber in Fig. 8.23 (d) is slightly smaller because it does not 

even have a tiny segment parallel to the load. In the following, the simulations of the 

same RVEs (similar to Fig. 8.23) are presented such that the nodes on each face of them 

are not tied to move together. 

 

 

 

 

 

Fig. 8.23. Comparing von Mises stress (MPa) contours for RVEs with different 
curvatures and the nodes on each face of RVEs are tied to move simultaneously. 
Bending angle: (a) α=0°, (b) α=2°, (c) α=5°, (d) α=25°. 

(a)

(b)

(c)

(d)
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Fig. 8.24. Comparing von Mises stress (MPa) contours for RVEs with different 
curvatures, with no equation on faces to tie nodes to move simultaneously. Bending 
angle: (a) α=0°, (b) α=2°, (c) α=5°, (d) α=25°. 
 

The average of the von Mises stress in both matrix and CNT in each of the RVEs shown 

in Fig. 8.23 and 8.24, are demonstrated in Fig. 8.25. It can be observed from Fig. 8.25 

(a) that, for both tied and not tied faces, the minimum stress in the polymer matrix is 

occurred in the RVE containing the fully straight CNT. As bending angle increases, the 

average stress in the matrix intensifies almost linearly. From Fig. 8.25 (b) it can be 

concluded that the average stress in the CNT placed fully straight is less than the ones 

when the bending angle is 2o   or 5o  . Also, the average stress in both matrix and 

the CNTs in the tied models are higher than that in the models with not tied faces, and 

(d)

(c)

(b)

(a)
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the ratio is almost 10%. As the simulations of Figs. 8.23 and 8.24 shows, tying the nodes 

on the RVEs surfaces, in order to model the periodic boundary conditions affect the 

overall response of the RVEs. 

 

   

Fig. 8.25. Comparing trend of von Mises stress for RVEs with different CNT curvatures, 
with tied and not tied nodes on each face. 
 

For this purpose, Fig. 8.26 illustrates the perturbation produced because of not tying the 

nodes on RVE faces. This perturbation is the consequence of different curvatures along 

the fibers axis, which create heterogeneous stiffness in each slice of the RVE along the 

direction of the fibers axis. 

 

  
Fig. 8.26. Comparing von Mises stress (MPa) distribution on RVEs with a curved CNT, 
bending angle is 25°: (a) Without tied equation on faces, (b) With tied equation on faces. 

(a) (b)

(a) (b)
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Comparison of Young’s moduli of the mentioned RVEs in Figs. 8.23 and 8.24 are 

depicted in Fig. 8.27. This figure reveals that considering the tied surfaces can cause the 

elastic modulus of a composite increase, which are calculated and shown in the labels 

above each RVE test. As seen, the elastic modulus of the RVEs with free faces have 

been diminished approximately 6%. 

 

 

Fig. 8.27. Comparing elastic response of RVEs with tied face (TF) and free face (FF). 
 

8.3.3 Primary Discussion for RVEs Containing One CNT 

The effective Young’s modulus of several CNT-based composites has been 

evaluated, and as an initial step in this process, the continuum mechanics concept is 

shown to be valid through using 3D RVE models of the composite. Numerical examples 

for both long and short CNT-reinforced composites have been conducted and validated 

using the available MD results and the strength of materials technique. The results are in 

complete agreement enlightening that the CM method can deliver a proper approximation 

in estimating the overall response of these types of composites. Although perfect bonding 

is assumed , actually in small strain range the applied load does not cause debonding, 
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which reduces the mechanical performance of the composites. Longer CNTs in these 

RVEs exhibit considerably better load transfer when compared to the short CNT cases. 

In the following, large-scale models of the composites reinforced with multiple 

nanotubes for various volume fractions are studied. The results for the effective Young’s 

modulus of the CNT/polymer composites are exhibited in terms of nanotube aspect ratio 

(AR), volume fraction, and morphology. It is worthy to mention, both FEM and 

constitutive modeling results (Odegard et al., 2002) show similar behavior with less 

improvement in the modulus after the length of 200 nm. 

8.4 Large Scale CNT-Reinforced Polymer Composite 

As explained in Chapter 6 and this chapter, 3D solid elements are employed for 

the CNTs instead of 3D shells, because modeling CNTs with shell elements have been a 

controversial subject in literatures; thus, the equivalent 3D solid elements are employed. 

Here, sweeping mesh technique using C3D8 (brick elements) for CNTs are considered. 

Also, free mapped meshing along with interior element growth using C3D4 (tetrahedral 

elements) are utilized for the matrix regions in ABAQUS software. Different models are 

created using the RVE_Maker software (see Chapter 6) containing: 0.5, 1.0, 2.0, and 3.0 

vol% for the CNTs. Moreover, the morphologies of the CNTs can be listed as: 

 Straight rod shapes of randomly dispersed CNTs: 

 Parallel to the direction of the applied load (is called Z-dir). 

 Perpendicular to the direction of the applied load (is called X-dir). 

 Fully random rods. 

 Curved shape CNTs. 
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The most challenging models in the above list are the ones containing the curved shape 

CNTs. The structural and mechanical factors to generate these large-scale RVEs are 

given in Table 8.8, and the related sample geometries are illustrated in Fig. 8.28. 

 

                

                

Fig 8.28. Different CNT morphologies for large-scale modeling. Samples volume 
fraction is 0.5%. (a) Z-direction. (b) X-direction. (c) Random Rods. (d) Curved. 
 

Table 8.8: Geometrical and mechanical parameters for large-scale CNT-based RVEs. 

Diameter (nm) Length (µm) Bending Angle Aspect Ratio E (TPa) Poisson’s Ratio

8 12   1.0 1.2L   o25 25    AR 120  1.0 0.05 

 

Matrix (Length × Width × Height) (µm³) E (MPa) Poisson's Ratio 

2.5 × 2.5 × 2.5 2500 0.35 

(c)

(a) (b)

(d)
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less than 0.054%, which shows the mesh density in both Case 3 and 4 are proper for 

virtually modeling the RVEs containing this type of CNTs. Similarly, for straight fibers, 

through increasing the mesh seeding number in Case 3, the elastic modulus has 

converged less than 0.031%. Therefore, there is no difference between the mesh 

densities in Case 3 or 4. 

 

Table 8.9: Elastic response of RVEs with different mesh densities (Curved CNTs). 

 Case 1 Case 2 Case 3 Case 4 

RVE Entities CNTs Matrix CNTs Matrix CNTs Matrix CNTs Matrix 

Mesh Seed # ≈ 45 20 ≈ 49 25 ≈ 53 30 ≈ 57 35 

NO. Elements 67872 1634092 74032 1843154 80192 2060845 86352 2289248

E (MPa) 3172.96 3157.10 3143.76 3142.05 

 

Table 8.10: Elastic response of RVEs with different mesh densities (Straight CNTs). 

 Case 1 Case 2 Case 3 Case 4 

RVE Entities CNTs Matrix CNTs Matrix CNTs Matrix CNTs Matrix 

Mesh Seed # ≈ 45 21 ≈ 49 25 ≈ 53 30 ≈ 57 35 

NO. Elements 69964 1326625 76176 1392564 82388 1681424 88600 1896234

E (MPa) 7599.0 7520.1 7476.33 7474.01 

 

      

Fig. 8.31. Elastic response of RVEs with different mesh densities (CNT 1 vol%). 

Curved CNTs Straight CNTs 
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In order to determine the proper RVE size, several virtual tests should be 

conducted. Therefore, 30 models (6 sizes and 5 random sample of each size) with curved 

CNTs were generated for each RVE size, and then all the RVEs were simulated and the 

minimum, average, and maximum elastic responses (which is the desired critical 

response) of them are plotted in Fig. 8.32. This diagram shows the proper RVE size for 

this study is 32.5μm , since after that size the criteria for evaluating the proper size 

changed a little. The trend of RVE size convergence is demonstrated in Fig. 8.31. It 

should be noted that, handling the RVEs with larger sizes with the available software 

and computers is a barely possible task. 

 

 

Fig. 8.32. Elastic response trend of curved CNTs to find proper RVE size. 
 

After determining the RVE size, many RVEs with different morphologies are 

created. Periodic and non-periodic geometrical boundaries are considered for the RVEs. 

For each of these two main categories, CNTs with four different arrangements as 

explained and shown in Fig. 8.28 are generated. Finally, for each CNTs arrangement, 
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Table 8.11 provides the average of stress produced in CNTs for each model. In order to 

perceive the CNTs arrangements effects on the RVEs response, the von Mises stress of 

these non-periodic RVEs for all the four CNT configurations are compared in Fig. 8.34. 

 

Table 8.11: Average von Mises stress (MPa) in CNTs for different non-periodic RVEs. 

 CNT Type 

CNT vol% Curved Random Rods Z-Dir X-Dir 

0.5 3309 4959 11688 2070 

1.0 2422 4554 9918 1345 

2.0 2579 4501 8095 831 

3.0 2738 4801 6936 636 

 

 

Fig. 8.34. Trends of average von Mises stress produced in CNTs of non-periodic RVEs. 
 

Fig. 8.34 illustrates the fashions of average stress in CNTs for each of the non-periodic 

models. The average stress has a sorted pattern in the well-arranged fibers (X- and Z-dir). 

But, in other cases (curved and rods), irregular pattern is observed; however, the fibers in 

the RVEs with 0.5 vol% are stressed more than the other weight fractions. Since the 
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distribution pattern of CNTs are fully random, although weight fractions are increased in 

the latter cases, their average stress may vary irregularly. It is obvious that the amount of 

stress in the CNTs placed in the direction of the applied loads (Z-dir) is the highest one 

and the minimum relates to the X-dir arrangements. 

For the RVEs with non-periodic geometry, Fig. 8.35 shows the trends of Young’s 

modulus for the composites with different types of CNTs. Based on the presented data in 

diagrams in Fig. 8.35 and 8.36, it can be concluded that adding more CNT to the 

composites, linearly enhance the elastic modulus of the composite. Also, it is apparent 

that adding more CNTs perpendicular to the direction of the applied load just increase 

the elastic modulus from 2665 MPa (vol 0.5%) up to 3000 MPa (vol 3.0%). It means 

increasing the volume fraction in the perpendicular direction does not boost the Young’s 

modulus of the composite. 

 

 

Fig. 8.35. Young’s modulus trends for composites containing different types of CNTs 
(AR ≈ 120), with non-periodic geometries. 
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Similarly, one can detect in Fig. 8.36 (a) a slight curvature in the response of the 

composites that have straight CNTs in the Z-dir (the direction of the applied load) up to 

3 vol%, which may lead to a saturation level or decelerate of enhancement while adding 

more carbon nanotubes. However, more simulations are conducted to find the correct 

path and pattern of elastic modulus improvement. Therefore, as plotted in Fig. 8.36 (b), 

after 3 vol% of CNTs the RVEs elastic modulus improvement accelerates through 

adding more CNTs to the composites. 

 

 

Fig. 8.36. Trends of elastic modulus variations of CNT/PMMA nano-composites with 
non-periodic geometry, for different CNT morphologies and volume factions (AR ≈ 
120): (a) All CNT configurations, (b) Just straight CNT configuration. 
 

In Fig. 8.37, a sample of a close range zoom inside a RVE is shown to better depict 

stress distribution in some fibers. It is observed those fibers segments that are aligned 

parallel to the applied load direction carry the highest portions of stress, and other CNTs 

that are randomly dispersed and curved to other directions, just transfer a very little 

portion of the applied load. 
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Fig. 8.39. Trends of average von Mises stress produced in CNTs of non-periodic RVEs. 
 

Also, in diagrams depicted in Fig. 8.40, the fashions of elastic modulus improvements 

for periodic RVEs are shown. This diagram demonstrates that the growth of the elastic 

modulus is linear for both straight and curved CNTs (up to 3 vol%). It is observable that 

the enhancement regarding to both curved and straight (Z-dir) CNTs are linear, and the 

Z-dir improvement is more intense. Based on these results, it can be achieved that the 

straight fibers are stressed two to three times more than the curved fibers. 

 

 

Fig. 8.40. Comparing composites containing two CNT types (AR ≈ 120), with periodic 
geometries. (a) Elastic moduli comparisons. (b) Trends of Young’s modulus growth. 
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Moreover, the comparisons between the response of the periodic and non-periodic 

geometries are clarified in Table 8.13 and Fig. 8.41. In this figure, two morphologies for 

curved and straight CNTs with different volume fractions are shown (AR ≈ 120). Also, 

the ratios of modulus enhancement for just straight CNTs are inserted in the table. From 

Fig. 8.41 and Table 8.13, it can be achieved the RVEs with periodic geometry give 

higher elastic modulus for the same volume fractions. As the volume fraction increases 

the ratios of Young’s moduli of the periodic with respect to the non-periodic are 

escalated just for the RVEs containing aligned CNTs in the direction of the applied load. 

However, in the RVEs with curved CNTs, for both periodic and non-periodic cases the 

overall elastic modulus are almost the same, and no degradation and/or enhancement is 

observed. From the mentioned table and diagram, it can also be obtained that the 

differences of the modulus in periodic and non-periodic cases increase, and as 

calculated, the ratio of periodic to non-periodic increases linearly. Such improvement in 

comparison to the non-periodic condition can be attributed to the fact that the CNTs 

cutting the faces of the RVEs carry more loads; since the load is directly applied to those 

fibers. Thus, as studied for small RVEs with just one CNT in Section 8.2.5.1 (see: Figs. 

8.4 and 8.5, and also Figs. 8.9 and 8.10); the large-scale samples with periodic 

conditions reveal more carrying load capacities, as well. 
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Table 8.13: Youngs modulus (MPa) of periodic and non-periodic RVEs and their ratios. 

 Vol (0.5%) Vol (1.0%) Vol (2.0%) Vol (3.0%) 

CNT Type Curve Z-dir Curve Z-dir Curve Z-dir Curve s-dir 

Periodic 2902 5699 3165 8762 3886 14443 4529 19964 

Non-Periodic 2941 5339 3173 7345 3883 10430 4524 12725 

Prd / Non-Prd 0.987 1.067 0.998 1.193 1.001 1.385 1.001 1.569 

 

 
Fig. 8.41. Comparing elastic modulus of RVEs with periodic and non-periodic CNTs. 

 

Since, the aspect ratio is one of the main parameters that affect the behavior of 

the composites; therefore, several models with less aspect ratios (10 < AR < 12), which 

is about one tenth of the previously modeled CNTs in Figs. 8.33 and 8.38, were 

generated to study the effect of this parameter on the large scale models. Similarly as an 

example, stress contours of just one series of the non-periodic RVEs with 1 vol% CNT 

and AR ≈ 11 are demonstrated in Fig. 8.42. 
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The amounts and trends of modulus enhancement, regarding Fig. 8.42, for a variety of 

CNT morphologies and volume fractions are provided and shown in Figs. 8.43 and 8.44. 

The ratios of modulus enhancement for each CNT arrangement regarding to the highest 

one in their categories (which are the Z-dir arrangements) are also noted in the chart. All 

of the different CNT arrangements show a linear modulus improvement for each case up 

to 3 vol%, and these trends are depicted in Fig. 8.44. 

 

 

Fig. 8.44. Elastic modulus trends of CNT-reinforved nano-composites with non-periodic 
geometry, for different CNT morphologies and volume factions (AR ≈ 11). 
 

Furthermore, elastic responses of the RVEs with two different AR are compared and 

shown in Figs. 8.45. The percentages of modulus reduction for each model with respect 

to its counterpart in the RVEs with higher aspect ratio are given. It illustrates that the 

maximum reduction relates to the Z-dir cases which is about 40% drop. The minimum 

decrease relates to the X-dir arrangements, which is about 2%. Regarding to Fig. 8.45, it 

is observed that through changing the values of aspect ratios of the CNTs, the modulus 

reduction can be sorted in a descending manner as: straight (Z-dir), straight (rod), 
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curved, and straight (X-dir). In addition, as the volume fraction increases, the amount of 

the elastic modulus reduction in all types (but X-dir) converges to about 38%. 

 

 

Fig. 8.45. Young’s modulus reduction (percentage) of CNT-reinforced composites with 
AR ≈ 11 regarding the composites containing CNTs with AR ≈ 120. 
 

The comparisons between Figs. 8.35, 8.43 and 8.45 proves that long CNTs contribute 

more to enhance a CNT-reinforced composite; hence, this geometrical parameter (aspect 

ratio) has a key role for improving the overall elastic behavior of the composites. Also, 

Fig. 8.46 shows the average value of von Mises stress in the polymer matrix of the RVE 

samples of Figs. 8.33 and 8.42. Different CNT morphologies regarding to two AR are 

considered, and the results confirm that in small strain range, increasing AR parameter 

reduces the average stress produced in the whole matrix. The reduction here for just 1 

vol% is approximately 4%. This phenomenon can be ascribed to the pattern of CNT 

distribution, which relates to the AR parameter of these constituents. 

 



297 
 

 

Fig. 8.46. Comparing average value of von Mises stress (MPa) in RVEs with different 
CNT arrangements, and two different ARs. In all cases, CNT volume fraction is 1%. 
 

In fact, the CNTs with higher AR are finer and can be dispersed homogeneously and 

perfectly inside an RVE and cover the whole matrix, such that the fibers are available 

everywhere inside the RVE domain, and they can locally carry the internal loads. Thus, 

CNTs with higher aspect ratios deliver lower level of stress inside the RVEs matrices. 

8.5 Summary 

The properties of fiber reinforced composites strongly depend on the direction of 

measurement. It is shown that the strength and Young’s modulus of fiber-reinforced 

composites attain the maximum value when they are measured in the longitudinal 

direction of the fibers. At any other angle of measurement and even a slight bending or 

curvature in the fibers lower the performances, and the minimum elastic modulus is 

obtained while the load is perpendicular to the longitudinal direction of the fibers. The 

outcomes of this method indicate that long nanotubes aligned parallel to the loading 

direction should be used for effective load transferring between the fibers and matrix. 
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Furthermore, the effect of Poisson’s ratio of the CNTs is studied and it is shown that it 

almost does not affect the overall responses of the RVEs. 

The research performed in this chapter successfully validates the FEM results 

with MD, and rule of mixtures as well, for just single carbon nanotube that is surrounded 

by polyethylene matrix, for two aspect ratios. It is also shown that instead of modeling 

the CNTs as hollow tubes; they can be modeled as long solid cylinders with their 

Young’s modulus reduced equivalently. This validation and agreement of the continuum 

mechanics with MD and ROM results can play a significant role for the finite element 

approach that can be used for characterizing larger models. 

It can be stated that the CM approach using FEM can deliver promising 

outcomes for nano-scale models as well as for large-scale models, when the results are 

focused on the overall responses instead of the interfacial properties of the composite. 

Emphasis is placed on modeling large-scale complex composite models using 3D solid 

elements instead of 3D truss, beam, or shell elements. The results shown here indicate 

that FEM can be utilized as an excellent estimation approach for evaluating elastic 

moduli of large-scale complex models; hence, FEM can be used for characterizing nano-

composites, which can significantly reduce computational time and resources (memory 

and cpu hours) in comparison to the MD method. 
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CHAPTER IX 
 

LARGE STRAIN MICROMECHANICAL RESPONSES OF 

POLYMER NANO-COMPOSITES USING UNIFIED  

VISCOELASTIC-VISCOPLASTIC-VISCODAMAGE MODLES 
 

9.1 Introduction 

There have been very few attempts to conduct more realistic large scale 

simulations of nanocomposites with random distribution of nano particles (e.g., carbon 

nanotubes/nanofibers, nano-clays, nano-ceramics, and hybrid inclusions) with different 

morphologies; even based on small strain concept let alone large deformation 

frameworks, which is the main focus of this chapter. 

Experimental studies revealed that the enhancement in the multifunctional 

properties of nanocomposites strongly depends on the morphologies (size, aspect ratio, 

volume fraction, and distribution) and properties of the nano-inclusions (see Chapters 1, 

2, 7, and 8). Although there are many experimental studies on nanoclay/nanotubes/ 

nanofibers polymer-based composites, very little research has been done in the three-

dimensional micromechanical computational modeling of such composites. 

Numerous experimental studies have shown that the material response of PCMs 

are very complex and is time-, rate-, and temperature-dependent and exhibits both 

recoverable and irrecoverable deformations (see Chapter 5). Besides, because polymer 

and polymer composites experience large deformation during both mechanical and 

thermal loading, investigating the response of such composites in large strain regime is 
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mandatory. However, as explained in Chapters 3, 4, and 5, the viscoelastic, viscoplastic 

and viscodamage constitutive models were generalized to be able to properly capture 

and measure the stress and strain fields in the large deformation range. 

Therefore, the main objective of this chapter is to employ the unified coupled 

time and rate dependent models in large strain framework (as explained in Chapter 5) in 

order to study the mesomechanical behavior of these composites. Hence, damage 

evolution in nano-composites containing PMMA (Polymethyl methacrylate) polymer 

embedded with silicate nanoclay particles (NCLP), nano-ceramic particles (NCRP), 

carbon nanotubes (CNT), and hybrid nano particles (HNP) (e.g. NCLP and CNT, or 

NCRP and CNT) are simulated through using the mentioned models. Also, the 

simulations are conducted in order to obtain and compare the overall macroscopic 

mechanical responses in terms of key microstructural features. The RVE models are 

subjected to uniaxial tension and compression at different strain rates. 

9.2 Constitutive Laws Mesh Sensitivity  

The accuracy of the FEA method depends on the sizeof the elements. To study 

the mesh sensitivity of the calibrated numerical models, the following simulations is 

conducted. One 2D RVE is chosen containing 2 vol% of intercalated nanoclay particles, 

and the RVE size is: 2.5×2.5 µm². Five different mesh densities are generated, and their 

configurations and number of elements in each case are demonstrated in Fig. 9.1. 
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    (a) Coarse mesh (Elem # 4096)                            (b) Fine mesh (Elem # 13726) 

                       
        (c) Finer mesh (Elem # 27262)                              (d) Finer mesh (Elem # 59774) 

                       
        (e) Finest mesh (Elem # 160192)                         (f) Load & Boundary Condition 

Fig. 9.1. Different mesh density for one 2D RVE with 2% nanoclay. 
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Displacement (or strain) and force (or stress) control tests have been performed. Fig. 9.2 

depicts the stress-strain responses for the RVEs with different mesh densities through 

using the unified models. In images (a) and (b), the differences of the unified models 

when the considered stress and strain measures are work-conjugate (as mentioned in 

Section 3.2.1) and non work-conjugate (as mentioned in Section 3.2.2) are shown. One 

can observe that the non-conjugate models are highly mesh sensitive. However, the 

work-conjugate models also show mesh dependency which is in an acceptable range. 

 

   
         (a) Non Work-Conjugate models.                  (b) Work-Conjugate models. 

Fig. 9.2. Stress-strain diagrams (displacement control simulation) for all mesh densities 
for both work-conjugate and non work-conjugate. 
 

In the following, Fig. 9.3 shows the damage distribution in the RVEs for the coarse, 

medium, and fine mesh scenarios. In this figure from (a1) to (c1), the depicted damage 

distributions relate to the unified constitutive models when they are written based on a 

non work-conjugate stresses and strains. Also, Fig. 9.3 (a2) to (c2) show the damage 

distributions according to the constitutive models written based on II-PK stress and GL 

strains which are the work-conjugate case, and were calibrated in Chapter 5. 
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                 (a1) Elem # 4096 (Coarse)                             (a2) Elem # 4096 (Coarse) 

   
                 (b1) Elem # 13726 (Medium)                        (b2) Elem # 13726 (Medium) 

   
                 (c1) Elem # 27262 (Fine)                               (c2) Elem # 27262 (Fine) 

Fig. 9.3. Damage distribution of strain-control simulation for Coarse, Medium, and Fine 
mesh densities: (a1) to (c1) Stress and strain are not work-conjugate. (a2) to (c2) II-PK 
stress and GL strain (work-conjugate). 
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In Fig. 9.3, for both cases, the RVEs have been illustrated in company with their 

discretized mesh element edges, just to show that the widths of the damaged regions are 

in the range of element sizes. Fig. 9.4 is continuing Fig. 9.3 for demonstrating damage 

distribution in the highly discretized RVEs. The same order is considered in this figure, 

i.e. images (a1) and (b1) relate to the non conjugate models and (a2) and (b2) are the 

results of the work-conjugate stresses and strains. 

 

   
                 (a1) Elem # 59774 (Finer)                              (a2) Elem # 59774 (Finer) 

   
                 (b1) Elem # 160192 (Finest)                          (b2) Elem # 160192 (Finest) 

Fig. 9.4. Damage distribution of strain-control simulation for Finer and Finest mesh 
densities: (a1) to (c1) Stress and strain are not work-conjugate. (a2) to (c2) II-PK stress 
and GL strain (work-conjugate). 



305 
 

In Fig. 9.4, in the contrary of Fig. 9.3, since in Finer and Finest mesh densities the size 

of meshes are very small (see Fig. 9.1 (d) and (e)); thus, mesh edges are removed to 

show the damaged areas much clearly. One can observe from Fig. 9.3 and 9.4 that in the 

non conjugate models, as the sizes of meshes become smaller, the damaged band regions 

are narrower and also the value of damage variable increases. Besides, the creep and 

recovery simulation results in Fig. 9.5 show that the used viscoelastic and viscoplastic 

constitutive laws are not sensitive to discretization; i.e. these time- and rate-dependent 

models intrinsically have length scale which makes them as mesh independent models. 

 

   
                 (a) Viscoelastic model.                    (b) Viscoelastic and viscoplastic model. 

 
(c) Viscoelastic, viscoplastic, and viscodamage model. 

Fig. 9.5. Stress control simulations, creep-recovery, for all mesh densities. 
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Comparing the images in Fig. 9.5 reveals that the responses of the composite models are 

mesh dependent when the viscodamage law is utilized (at 94 MPa). In this figure, as the 

meshes becomes finer, the strain (especially in tertiary creep) increases. However, the 

responses are in an acceptable range. 

9.3 3D Microstructural Models 

In this subsection, three-dimensional microstructure-based representative volume 

elements (RVEs) have been arbitrarily generated with different distributions and 

patterns. The main sample geometries of the simulated models are shown in the 

following figures. 

At first, nanoclay and nano ceramic particles are demonstrated in Fig. 9.6. For 

creating these geometries the developed RVE_Maker software as explained in Chapter 6 

is used. The volume fractions of both NCLP (nano-clay particles) and NCRP (nano-

ceramics particles) are 1, 2, and 3%. Just three volume fractions are probed; because, 

here the main focus is studying the effects of the 3D particles in nucleation and growth 

of damage in these polymer composites, and also the trend of the overall responses of 

the composites. Furthermore, simulating, running, and extracting data for composites 

with higher volume fractions excruciates the computer resources and time. Therefore, for 

these types of inclusions, 6 RVE models are generated (3 of each), and totally 6 (RVEs) 

× 2 (strain rate) × 2 (tension and compression) = 24 simulations are conducted. The 

mechanical properties and geometrical variables of NCLPs are the same as presented in 

Table 7.4. In order to compare the effects of particles shape on RVEs responses, the 

mechanical properties of NCRPs are assumed to be the same as NCLPs. 
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Fig. 9.6. Microstructures with NCRPs (a1 to c1) and NCLPs (a2 to c2). 

(a1) wt 1% (a2) wt 1%

(b1) wt 2% (b2) wt 2%

(c1) wt 3% (c1) wt 3%
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For the purpose of studying the effects of CNTs on polymer composites, CNTs 

with two different AR are investigated. The AR of one series is about 120, and the other 

one is about 11 (10 < AR < 12). Four different volume fractions are generated for CNTs 

with AR ≈ 120 as: 0.1, 0.5, 1.0 and 2.0%. Also, four different volume fractions are 

generated for CNTs with AR ≈ 11 as: 0.5, 1.0, 2.0, and 3.0%. Henceforth, for fibers with 

AR ≈ 120; 8 RVE models are generated (2 (curved and straight) × 4 vol%). So, totally 8 

(RVEs) × 2 (strain rate) × 2 (tension and compression) = 32 simulations are performed. 

The geometrical variables and mechanical parameters for these CNT-based RVEs are 

presented in Table 8.9. In Fig. 9.7, for the sake of conciseness, just two RVE samples of 

the RVE models are presented, showing the morphology of the curved and straight 

CNTs with higher aspect ratios. One is noted to Chapter 8 that generating CNTs as 

random rods for higher volume percent is impossible, and fibers perpendicular to the 

applied load direction are not interested. 

 

         

Fig. 9.7. Microstructures containing 1% volume fraction CNTs with aspect ratio ≈ 120. 

(a) Curved (b) Straight
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Fig. 9.8 illustrates 4 RVE morphologies with AR ≈ 11. The geometrical and mechanical 

parameters for these CNTs are the same as CNTs with AR ≈ 120, but only the diameter 

of these fibers is almost 10 times larger. Henceforth, for this case totally 16 RVEs (4 

morphology × 4 vol%) × 2 (strain rate) × 2 (tension and compression) = 64 simulations 

are performed. Thus, all in all, 96 simulations are conducted for both CNT ARs. 

 

     

       

Fig. 9.8. Microstructures containing 1% volume fraction CNTs with aspect ratio ≈ 10. 

(a) Random Rods (b) Curved

(c) X direction (d) Z direction
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Fig. 9.13. Damage evolution in RVEs with NCLPs, in compression: (a1) to (c1) 2 vol%, 
and (a2) to (c2) 3 vol%. 
 

(c1) (c2)

(b1) (b2)

(a1) (a2)
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Several finite element RVE models under displacement control test (both tension and 

compression) up to 30% strain were conducted, for simulating intercalated 3D NCLPs 

embedded in PMMA matrix. In the following, for the sake of conciseness, just the 

models under 0.001 s   displacement control test are depicted, unless mentioned. 

Comparing the magnitude and pattern of damage distribution in the polymer matrices, 

one can observe that although the maximum damage variable is higher as the particles 

volume fractions increase, the average value of damaged regions are less. In the 

following, the stress strain responses of the RVEs subjected to compressive load applied 

almost perpendicular to the major plane of the NCLPs are depicted in Fig. 9.14. 

 

   
                       (a) 0.001/ s  .                                             (b) 0.1/ s  . 

Fig. 9.14. Stress-Strain response of RVEs containing NCLPs, in compression. 
 

For the sake of briefness, in Fig. 9.15, the damage evolution of the RVE containing 3% 

NCLP which is subjected to tension load is shown. The same as damage distribution 

through compressive loading, the presence of particles is the main stimulation of damage 

initiation and propagation. 
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0.3, in compression and φ ≈ 0.42 in tension for the RVEs containing 3% NCLPs. It 

simply shows the amount of damage is more intense in tension comparing to compression 

load case, and it means 40% increase in the damaged regions has occurred. Moreover, 

the diagrams in Fig. 9.16 illustrate the stress-strain response of the NCLP/PMMA 

composites at two strain rates in tension, for three different volume fractions. It can be 

concluded that the trend of these curves and the magnitude of maximum stress changes 

linearly regarding the particles volume fractions. Also, no increase in elastic modulus is 

observable in these curves, regarding particles volume fractions. It can be seen that, the 

composites behave almost the same as each other up to 3% strain. As presented in Fig. 

9.14 and 9.16, by comparing the responses of the composites with the behavior of pure 

polymer matrix (PMMA), the main enhancement in toughness and maximum strength 

happened when 1% NCLP is added to the matrix, and after that a linear enhancement 

trend is observed. Comparing Figs. 9.14 and 9.16, one can obtain the mechanical 

improvements of these composites are more pronounced during compressive load. 

 

    
                        (a) 0.001/ s                                                (b) 0.1 / s   

Fig. 9.16. Stress-Strain response of RVEs containing NCLPs, in tension. 
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Fig. 9.18. Illustration of damage growth in RVEs with 2 and 3% NCRPs, in compressive 
load: (a1) to (c1) 2 vol%, and (a2) to (c2) 3 vol%. 
 

Then the degraded parts of matrix at the top of the spheres turn around the same 

particles, and afterwards spread in the direction of the applied load in between the 

(c1) (c2)

(b1) (b2)

(a1) (a2)
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neighboring inclusions. Thus, the damaged regions linearly propagate and merge together 

in the direction of load, which provide dispersed weak columns inside the RVE and lead 

to less stiffness. This phenomenon is better illustrated in Fig. 9.17 (d). The same damage 

initiation and growth pattern in tensile load can also be seen in the RVE with 3% NCRP 

in Fig. 9.19 (a) to (c). Fig. 9.19 (d), which is a close zoom of the particles and damaged 

elements, shows a better perspective of this damage evolution outline. Furthermore, the 

stress-strain diagrams of the simulated RVEs containing spherical ceramics subjected to 

two strain rates in both tension and compression are demonstrated. 

 

  

  
Fig. 9.19. Damage evolution in RVE with 3 vol% NCRPs, in tension: (a) to (c) Growth 
of damage, (d) Close view of damage propagation between particles and matrix. 

(c) 

(a) (b)

(d)
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9.4.3 Carbon Nanotubes Polymer Composites 

In this section, the damage growth in the RVEs containing CNTs are presented 

and discussed. At first, the CNTs with higher aspect ratios, as explained in section 9.3 

are shown. Afterwards, the CNTs with smaller aspect ratios will be demonstrated and 

then compared with the ones with higher ARs. In Fig. 9.21, the formation of damage 

inside a composite containing a little amount of CNTs (0.1 vol%) subjected to 

compressive load is depicted. Damage is initiated from CNTs tips, and at first gradually 

propagates perpendicular to the CNTs axis, and then parallel to the CNT axis. 

 

  

  
Fig. 9.21. Damage evolution in RVE with 0.1 vol% oriented CNTs in the direction of 
applied load, in compression: (a) to (c) shows the growth of damage. 

(a) (b)

(c) (d)
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It means the damaged regions at the CNT tips stimulate and drive more damage to the 

matrix, rather than the amplitude of the stress transformed between the CNTs and matrix. 

 

 

 

Fig. 9.22. Damage evolution in RVE with 0.5 vol% oriented CNTs in the direction of 
applied load, in compression: (a) to (c) shows the growth of damage. 
 

This phenomenon can be attributed to the fact that, the straight CNTs are similar to 

rebars in reinforced concrete. But here, the polymer matrix is softer than concrete paste 

and the CNTs are stiffer than the steel rebars; therefore, the CNT rods are stiffer than the 

PMMA matrix in two orders of magnitude (about several hundred). Thus, applying 

compressive load to the top surface of the RVEs in the direction of CNTs is equivalent 

(c) (d)

(a) (b)
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to piercing the polymer matrix by the tiny CNT rods. Moreover, since the CNTs have 

two sharp stiff ends; hence, while compressing the RVEs, the both ends cause piercing 

the matrix and the initial damage occurs in those locations. 

 

 

 

Fig. 9.23. Damage evolution in RVE with 1.0 vol% oriented CNTs in the direction of 
applied load, in compression: (a) to (c) shows the growth of damage. 
 

As the volume fraction of CNTs increases (Figs. 9.22 and 9.23), more piercing damage 

happens, and less damage development regarding the transferred load between CNTs 

and matrix is observable. In tension (Fig. 9.24), similar to compression, the tips of the 

fibers induce damage. But in this case, large amounts of stress fields are canalized and 

(c) (d)

(a) (b)
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transferred to the CNTs at first via their tips and not their main body. Thus, the amount 

of the transferred stress at the tips leads to the initiation of damage in matrix. 

 

 

 

 

Fig. 9.24. Damage evolution in RVE with 1 vol% oriented CNTs aligned to tensile load: 
(a) to (d) Damage initiation and growth, (e) Overall view of damage pattern on RVE. 

(c) (d)

(b)(a) 

(e) 



He

sho

and

the

sur

und

lea

sup

 

Fig
CN

(a

(c

 

ere, the conti

ould be prob

d tensile load

e reinforcing

rrounding m

damaged, an

ads to concl

pporting face

g. 9.25. Von
NTs, in comp

a) 

c) 

inuum dama

bed in anothe

d, damage is

g fibers, such

atrix. For ins

nd all damag

ude that fai

es. The stres

n Mises stres
pression, and

age concept 

er study. As 

s high at the 

h that the m

stance, Fig. 

ged elements

ilure happen

ss fields in fi

ss (MPa) dur
d 0.001/ 

325 

is used; how

can be seen 

CNT tips an

middle parts 

9.24 (e) sho

s are concent

ns at the ap

ibers confirm

 

 
ring increasi
/ s : (a) to (d)

(b)

(d)

wever, debo

in previous 

nd is very low

almost do n

ws the large

trated at bot

pplied load s

m and explain

ing load, in R
) increase an

nding of fib

models unde

w around the

not induce da

e middle part

th ends of th

surface and 

n this idea, a

RVE with 1
nd distributio

bers and mat

er compress

e main body

amage into 

t of the RVE

he tiny fibers

the constra

as well. 

 vol% orien
on of stress.

trix 

ive 

y of 

the 

E is 

s. It 

aint 

 

 
ted 



Thu

loa

ma

Bu

stim

are

the

is w

 

Fig
CN

(a

(c

 

us, in order 

ading cases 

agnitudes of 

ut, as the loa

mulate dama

e conveyed v

e tips. The da

well transfer

g. 9.26. Von
NTs, in tensio

a) 

c) 

to better ex

are shown i

stress, at firs

ad increases 

age into the m

via the main

amage distrib

rred to CNTs

n Mises stres
on, and  

plain this ev

in Figs. 9.25

st (images (a

(images (b)

matrix, and 

n CNT bodie

bution and th

s and carried

ss (MPa) dur
0.001/ s : (a)

326 

vent, the dist

5 and 9.26. 

a)), at CNT t

) to (d)), and

damaged pa

es providing 

he stress con

d by them su

 

 

ring increasi
) to (d) incre

(b)

(d)

tributions of

In these fig

tips are high

d since the t

arts cannot ca

more conta

ntours show 

uch that no d

ing load, in R
ease and dist

f von Mises 

gures, one ca

er than the o

transferred l

arry more lo

act surface in

the internal 

amage is gen

RVE with 1
tribution of s

stress for bo

an observe 

other segmen

load at the t

oad; then, loa

n comparing

stress in RV

nerated. 

 vol% orien
stress. 

oth 

the 

nts. 

tips 

ads 

g to 

VEs 

 

 

ted 



327 
 

Also, the stress-strain curves of the simulated samples, for the CNTs with higher aspect 

ratios, oriented in the direction of applied tension or compression, at two strain rates, are 

portrayed in Fig. 9.27. It is seen that the stress-strain response of the polymer composites 

is enhanced by increasing the volume percent of CNTs. Young’s modulus, maximum 

strength, and strain hardening rates increase a little, and almost in linear outline, while 

increasing the CNTs. The damage intensification reduces the performance of the 

composites in tensile tests (images (a2) and (b2)), and it is more obvious while adding 

more CNT to the system. 

 

 

Fig. 9.27. Stress-strain response of RVEs containing oriented CNTs, at two different 
strain rates: (a1) and (b1) Compressive load, (a2) and (b2) Tensile load. 
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In the following, the overall responses and damage initiation and evolutions in the RVEs 

containing curved CNTs are presented, in Figs. 9.28 to 9.33. 

 

  

  

 

Fig. 9.28. Damage evolution in RVE with 0.1 vol% curved CNTs, under compression: 
(a) to (d) Damage initiation and growth, (e) Overall view of damage pattern on RVE. 

(c) (d)

(a) (b)

(e) 
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Fig. 9.29. Damage evolution in RVE with 0.5 vol% curved CNTs, under compression: 
(a) to (d) Damage initiation and growth, (e) Overall view of damage pattern on RVE. 
 

Similar to the straight CNT cases under compressive load, damage is very high at the tip 

of CNTs and is very low around their main bodies, such that the central parts of the 

(c) 

(e) 

(d)

(a) (b)
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fibers almost do not generate damage into the surrounding polymer matrix. But, just 

those CNT tips that are parallel to the direction of the applied load cause initial damage. 

 

  

  

 
Fig. 9.30. Damage evolution in RVE with 1.0 vol% curved CNTs, under compression: 
(a) to (d) Damage initiation and growth, (e) Overall view of damage pattern on RVE. 

(e) 

(c) (d)

(a) (b)
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Fig. 9.31. Damage evolution in RVE with 1.0 vol% curved CNTs, under compression: 
(a) to (d) Damage initiation and growth, (e) Overall view of damage pattern on RVE. 
 

The same scenario is repeated in tensile loading (Fig. 9.31); i.e. the damage in the host 

material (PMMA) commences at the CNT tips whose fiber segments are parallel to the 

(e) 

(c) (d)

(a) (b)
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compression loads (at two strain rates), are portrayed in Fig. 9.34. The diagrams reveal 

that in compression tests, a linear trend of enhancement of Young’s modulus, maximum 

stress and toughness can be obtained due to increasing the curved CNTs. The same trend 

is observed in tension tests, as well. However, since the magnitude of damage is more 

intensive in tensile tests, adding more CNTs causes reduction in toughness. 

 

 

Fig. 9.34. Stress-Strain response of RVEs containing curved CNTs, at 2 different strain 
rates: (a1) and (b1) Compression load, (a2) and (b2) Tension load. 
 

One of the main parameters governing the CNT-based composite behavior is the fibers 

aspect ratios; thus here, the effects of this geometrical variable on the overall response of 
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the RVEs are presented and discussed. At first, all CNT configurations are shown in 

Figs. 9.35 and 9.36, and for briefness just oriented and curved CNTs are depicted. 

 

     

     

     

Fig. 9.35. Damage nucleation and growth inside RVEs with 0.5% CNT (AR ≈ 11), under 
compressive load: (a1) to (c1) Random rod CNTs, and (a2) to (c2) Curved CNTs. 

(a1) (a2)

(b2)(b1) 

(c1) (c2)
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Fig. 9.36. Damage nucleation and growth in RVEs with 0.5 vol% CNT (AR ≈ 11) under 
compressive load; CNTs oriented in: (a1) to (c1) X-direction and (a2) to (c2) Z-direction. 
 

According to Figs. 9.35 and 9.36, for all cases, damage is stimulated and initiated at the 

tips of CNTs. However, the magnitude of damage is highest when the fibers are oriented 

(a1) (a2)

(b2)(b1) 

(c1) (c2)
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in load direction, and is lowest when aligned perpendicular to the load. The maximum 

and average magnitude of damage in curved and X-direction cases are almost the same. 

 

    

    

    

Fig. 9.37. Damage nucleation and growth in RVEs with 1.0 vol% CNT (AR ≈ 11) under 
compressive load; CNTs oriented in: (a1) to (c1) Curved, and (a2) to (c2) Z-direction. 

(c1) (c2)

(b1) 

(a1) (a2)

(b2)
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Fig. 9.38. Damage nucleation and growth in RVEs with 2.0 vol% CNT (AR ≈ 11) under 
compressive load; CNTs oriented in: (a1) to (c1) Curved, and (a2) to (c2) Z-direction. 
 

Here, similar to the CNTs with AR≈120, damage is highest in oriented CNTs comparing 

to the curved ones. But, the amplitude of damage is less in AR≈11, because the cross 

(c1) (c2)

(b1) (b2)

(a1) (a2)
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section areas of the fibers with AR≈11 are much greater than the one with AR≈120; thus, 

the CNTs cannot penetrate as easy as CNTs with higher aspect ratios. 

 

     

     

     

Fig. 9.39. Damage nucleation and growth in RVEs with 3.0 vol% CNT (AR ≈ 11) under 
compressive load; CNTs oriented in: (a1) to (c1) Curved, and (a2) to (c2) Z-direction. 

(c1) (c2)

(b1) (b2)

(a1) (a2)
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For CNTs with both ARs under compression, it is obvious that damage is localized at 

both ends of the oriented CNTs, but heterogeneously distributed in RVEs with curved 

CNTs. Also, the average magnitude of damage in curved ones is less than oriented ones. 

Again, similar to CNTs with higher AR, the main mechanism of failure for the straight 

fibers is due to the CNT tips and the surrounding matrix in that location. In the 

following, in Figs. 9.40 and 9.41, the stress strain diagrams of the simulated RVEs with 

AR≈11 are shown and compared to each other and to pure polymer matrix responses. 

 

 

Fig. 9.40. Stress-strain responses of RVEs (AR≈11), containing all CNT configurations, 
under compressive load, 0.001/ s  . 
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Fig. 9.41. Stress-strain responses of RVEs (AR≈11), containing all CNT configurations, 
in compression, 0.1/ s  . 
 

Due to the recent presented diagrams, it is concluded that the maximum peak 

stress, Young’s modulus, and toughness can be achieved through using oriented CNTs, 

and the minimum values for these mechanical properties are obtained according to the 

curved CNTs; even though the amplitude of damage in curved CNTs is less than the one 

in oriented CNTs. In the lowest volume fraction (0.5%), the differences between the 

mentioned mechanical properties are little, and while adding more CNTs to the 

composites just the oriented CNTs show better enhancement, and the mechanical 

improvements regarding other CNT configurations is very small. Moreover, comparing 
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the trend of stress strain curves relating to the oriented fibers, one can recognize that the 

overall damage is increased in RVEs while increasing the fibers volume percentages. 

This causes the stress-strain curves slope down (images (c) and (d) of Figs. 9.40 and 

9.41) which means the composite systems after 10% strain absorb less energy. 

In the following, damage initiation and growth in these RVEs (AR≈11), but under 

tension is shown; and for the sake of briefness, just maximum CNT volume fraction, 3%, 

for both curved and oriented CNTs are displayed, in Figs. 9.42 and 9.43. Here, similar to 

compression, the curved CNTs show better damage distribution in RVE domain. 

 

     

     

Fig. 9.42. Damage distribution in RVE with 3% curved CNT, AR≈11, under tension: (a) 
to (d) Damage initiation and growth. 

(c) (d)

(a) (b)
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Fig. 9.43. Damage distribution in RVE with 3% curved CNT, AR≈11, under tension: (a) 
to (d) Damage initiation and growth, and (e) Damage distribution over the whole RVE. 
 

But, in the RVE with oriented CNTs, Fig. 9.43, damage is almost not created in most of 

the RVE domain, and just localized near both CNT ends. In Fig. 9.43 (e), it is obvious 

(a) (b)

(d)(c) 

(e) 
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that the failure mechanism is the rupture at both CNT tips. It means, in this case the 

whole RVE is not strained, and just both pieces of polymer matrix in front of both CNT 

end tips are being strained. In this part, in Figs. 9.44 and 9.45, the stress-strain diagrams 

of the simulated RVEs with AR≈11, subjected to tensile loads, are shown and compared 

to each other and to the pure polymer matrix. These RVEs also show the same trend 

similar to the RVEs containing CNTs with AR≈120. Here, since the magnitude of 

damage is smaller than CNTs with AR≈120; thus, adding more fibers to the RVEs can 

improve the mechanical responses of the composites a little more. 

 

 

Fig. 9.44. Stress-strain responses of RVEs (AR≈11), containing all CNT configurations, 
under tensile load, 0.001/ s  . 
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However, adding inclusion causes more damage inside the composites and degrades the 

maximum stress and the overall toughness. This reduction is more critical in higher 

strain levels (Fig. 9.43). Similar to the CNTs with higher AR, mechanical enhancement 

can be achieved if the fibers are fully placed in the direction of the applied load. 

 

 

Fig. 9.45. Stress-strain responses of RVEs (AR≈11), containing all CNT configurations, 
under tensile load, 0.1/ s  . 
 

9.4.4 Hybrid Polymer Nano Composites 

In this section, damage initiation and distribution in hybrid composites are 

demonstrated. Here, similar to previous sections, the emergence of damage is studied to 
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find out which type of inclusions at first stimulates and drives damage inside the host 

material (polymer matrix). 

9.4.4.1 Hybrid CNTs and NCLPs Composites 

In this subsection, the damage distribution pattern and the mechanical responses 

of mixed CNTs and NCLPs are studied and shown. Three different CNT volume 

fractions (0.5, 1, and 2%) with AR ≈ 120, and three NCLP volume fractions (1, 2, and 3 

%) are mixed, and nine different micro structures are generated. Figs. 9.46 and 9.47 

illustrate the initiation of degradation (damage) in PMMA, under compressive load, and 

similar to Section 9.4.3, the tips of those CNTs that are placed in the direction of applied 

loads, stimulate damage. 

 

 

  
Fig. 9.46. Damage evolution in RVE with 0.5 vol% curved CNT (AR ≈ 120) and 1% 
NCLP, in compression: (a) to (c) Damage nucleation and growth, and (d) Close view of 
damage propagation between CNTs and NCLPs inside matrix. 
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Fig. 9.47 Continiued. 

Fig. 9.47. Continued. 

  

 
 

Furthermore, the degradations in the matrix evolve along the main body of the 

mentioned CNTs. Subsequently, as seen in Figs 9.46 and 9.47, the damaged regions 

expand perpendicular to the CNTs segments through the interspace gap between the clay 

particles. Other CNTs (the ones are not placed in the direction of applied load) do not 

show any effect on matrix degradation. In both figures, it can be seen that the presence 

of clay particles do not generate damage inside the RVEs, and this can be observed 

better in Fig. 9.46 (d). Moreover, comparing Figs. 9.46 and 9.47, one may understand 

that by increasing the clay contents, the volume of damaged regions and their average 

magnitudes decrease. It means the presence of clay particles is able to postpone the 

propagation of damage inside the CNT-based composites. 

In Figs. 9.48 and 9.49, the same amount of clay contents as shown in Figs. 9.46 

and 9.47 are mixed to the RVE systems, but the volume fraction of nanotubes are four 

times larger than the previous models (from 0.5% to 2%). As seen, and similar to Figs. 

(c2)(c1) 
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Fig. 9.49. Damage nucleation and growth inside RVEs with 2% curved CNT (AR ≈ 120) 
and: (a1) to (c1) 2% NCLP, and (a2) to (c2) 3% NCLP, under compressive load. 
 

(a1) (a2)

(c2)(c1) 

(b2)(b1) 
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By comparing Figs. 9.48 and 9.49, not only the existence of NCLPs does not generate 

damage, but also reduces the degraded regions and their magnitudes. Therefore briefly, 

regarding the presented damage distribution in the RVEs under compressive loads (Figs. 

9.46 to 9.49), the reinforcing curved fibers cause damage and the platelet configuration 

of NCLPs diminishes the damage evolution. Here, 18 simulations were performed to 

gain and illustrate the overall RVEs stress-strain responses with different particles 

mixture scenarios, and they are presented in Fig. 9.50. 

 

 
                        (a) 0.001/ s                                                    (b) 0.1/ s   

Fig. 9.50. Stress-strain response of RVEs containing reinforcing curved CNTs and 
NCLPs, subjected to compressive load, at 2 strain rates. 
 

In these diagrams (Fig. 9.50), Young’s modulus, maximum stress, and toughness are 

increased while increasing both types of inclusions. In both strain rates, there are curve 

overlaps between different NCLP mixtures of the RVEs containing 0.5% and 1% CNT; 

but, the responses of the models with 2% CNT are considerably higher, and they have no 

overlap with 1% CNT mixtures. Thus, it can be obtained that the main enhancement is 

due to the presence of CNTs, and then adding the NCLPs can improve the mechanical 
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responses a little more. Although the changes of CNTs volume faction are less than the 

changes of NCLPs volume faction, the CNT effects are more pronounced in composites. 

Similar to compression, in tensile simulations, the CNTs initiate the degradation inside 

the polymer matrix, rather than the NCLPs. Also, dissimilar to the models containing 

just NCLPs (Subsection 9.4.1) under tension, damage starts at the tips of the NCLPs 

instead of the space between their major planes. This occurs not for NCLPs orientation 

and shape, but because damage is mainly governed (controlled and propagated) by fibers 

inside the RVEs, which can be seen in Figs. 9.51 and 9.52. Also, while adding more 

NCLPs in each series of hybrid mixture, similar to compressive tests, the amplitude of 

damage decrease. 
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Fig. 9.52. Damage nucleation and growth inside RVEs with 0.5% curved CNT (AR ≈ 
120) and: (a1) to (c1) 2% NCLP, and (a2) to (c2) 3% NCLP, under tensile load. 
 

In the following the damaged regions inside the RVE containing 2% CNT and three 

different NCLPs volume fractions are depicted. As seen in Fig. 9.53, damage initiates at 

the tip of all CNTs that are close to the surface boundary conditions. On the contrary of 

the previous simulations, damages are formed at the CNT tips, no matter they are 

parallel to the applied load or not. It shows that, huge amounts of stresses are localized 

in both top (applied load) and bottom (boundary condition) surfaces of the RVEs, which 

are transferred to the CNTs via their tips. However, damage initiation and growth inside 

the RVEs under tension are similar to the models under compression (it initiates at CNT 

tips, growes along major axis, and then extend perpendicular to the fibers major axis). 
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Fig. 9.54. Damage nucleation and growth inside RVEs with 2% curved CNT (AR ≈ 120) 
and: (a1) to (c1) 2% NCLP, and (a2) to (c2) 3% NCLP, under tensile load. 
 

In addition, like previous RVE models, increasing the volume fraction of clay particles 

causes reduction in damage growth in the polymer matrix. This behavior which is called 

damage growth shielding can be found by comparing Figs. 9.53 and 9.54. Moreover, the 

stress-strain responses of the tensile simulations are depicted in Fig. 9.55. Both diagrams 

show the effect of curved CNTs are more pronounced than the NCLPs, such that the 

CNTs mainly improve the mechanical behavior of the RVEs, and adding clays to the 

models just enhance it a little. Comparing Fig. 9.50 and 9.55, one may recognize that the 

(c1) (c2)

(b2)(b1) 
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effects of NCLPs are more considerable in compressive loads, and almost negligible in 

tensile loading condition. 

 

 
                      (a) 0.001/ s                                              (b) 0.1/ s   

Fig. 9.55. Stress-strain response of RVEs containing reinforcing curved CNTs and 
NCLPs, subjected to tensile load, at two strain rates. 
 

In the following, the magnitude of toughness modulus for the simulated hybrid 

composites are shown in Fig. 9.56. The trends of the toughness modulus are linear for all 

hybrid cases (inclusions volume fractions), in both compression and tension loading, at 

two different strain rates. It can be found out that there is no significant improvement in 

toughness modulus, and the trend and rate of toughness modulus enhancement are the 

same in compression and tension. 
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                        (a) Compression                                                    (b) Tension 

Fig. 9.56. Toughness modulue of RVEs containing reinforcing curved CNTs and 
NCLPs, at two strain rates. 
 

9.4.4.2 Hybrid CNTs and NCRPs Composites 

In this subsection, the effects of spherical particles on the overall response of 

PMMA-based nano composites containing CNTs are illustrated and discussed. The same 

as previous subsection, three different CNT volume fractions (0.5, 1, and 2 %) with 

aspect ratio ≈ 120, and three NCLP volume fractions (1, 2, and 3 %) are mixed, and 9 

different micro structures are generated. Figs. 9.57 and 9.58 depict the initiation of 

degradation in the matrix, which are subjected to compressive load. They show the 

presence of the spherical particles does not affect the initiation of damage inside the 

RVEs containing CNTs. This can be observed better in Fig. 9.57 (d). As seen, the 

NCRPs do not provoke the polymer matrix to be damaged in the presence of CNTs. 

Here, according to Figs. 9.57 and 9.58, the degradations are incited around the CNT tips, 

and evolve in the direction of fibers major axis, and then propagate perpendicular to the 

axis through the space between the spherical particles. This damage distribution pattern 

is similar to the one in subsection 9.4.4.1, which means the tips of those CNTs that are 

placed in the direction of applied loads stimulate damage in matrix. 
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magnitudes. It means the presence of the spherical particles cannot postpone the 

propagation of damage inside such CNT-based composites. 

 

  

  

  
Fig. 9.58. Damage nucleation and growth inside RVEs with 0.5% curved CNT (AR ≈ 
120) and: (a1) to (c1) 2% NCRP, and (a2) to (c2) 3% NCRP, under compressive load. 
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Fig. 9.60. Damage nucleation and growth inside RVEs with 2% curved CNT (AR ≈ 120) 
and: (a1) to (c1) 2% NCRP, and (a2) to (c2) 3% NCRP, under compressive load. 
 

The overall stress-strain responses of the hybrid RVEs containing CNTs and NCRPs, at 

two strain rates, are shown in Fig. 9.61. The diagrams show that the effect of CNTs are 

(b1) (b2)

(c1) (c2)

(a1) (a1)



363 
 

more significant than the NCRPs, such that the CNTs mostly enhance the mechanical 

behavior of the composites, and adding spherical particles to the system just improve it a 

little. Both diagrams illustrate that the best improvement regarding to the NCRPs 

happens when they are mixed with the composites containing more fibers. Therefore, 

when the CNTs volume fractions is higher, the NCLP’s can better improve the RVE’s 

responses, under compressive load. 

 

 

                         (a) 0.001/ s                                                    (b) 0.1/ s   

Fig. 9.61. Stress-strain response of RVEs containing reinforcing curved CNTs and 
NCRPs, subjected to compressive load, at two strain rates. 
 

In the following, to study the effect of particles on damage distribution pattern under 

tension in this type of hybrid composites, the same models are subjected to tensile loads. 

In Fig. 9.62 (d), the damage distribution around one single CNT, under tensile load, is 

displayed. As illustrated in Figs. 9.62 and 9.63, increasing the amount of NCRPs does 

not affect the damage distribution pattern in the composites under tensile load. This 

phenomenon shows that spherical particles (NCRPs) dissimilar to platelet particles 

(NCLPs) are not able to provide resistance shield against damage propagation inside the 
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Fig. 9.63. Damage nucleation and growth inside RVEs with 0.5% curved CNT (AR ≈ 
120) and: (a1) to (c1) 2% NCRP, and (a2) to (c2) 3% NCRP, under compressive load. 
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once more confirm that when the CNTs volume fractions is higher, the effect of NCLPs 

are more significant for improving the RVE’s responses. Also, the Young’s modulus of 

the composites are almost linearly enhanced, according to the CNTs and NCRPs. At 

first, all the mechanicl aspects of the composites are improved by the amount of CNTs,  

and then slightly enhanced by adding the ceramic particles. 

 

 
                     (a) 0.001/ s                                              (b) 0.1/ s   

Fig. 9.65. Stress-strain response of RVEs containing reinforcing curved CNTs and 
NCRPs, subjected to tensile load, at two strain rates. 
 

Comparing Fig. 9.61 and 9.65, one may recognize that the effects of NCRPs are more 

considerable in compression rather than in tension. The magnitude of toughness modulus 

for these hybrid composites are shown in Fig. 9.66, and their trends are almost linear for 

all cases, in compression and tension loading, at both strain rates. It can be found out that 

there is no significant improvement in toughness modulus and the trend and the rate of 

toughness modulus enhancement are the same in compression and tension. 
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                         (a) Compression                                                    (b) Tension 

Fig. 9.66. Toughness modulus of RVEs containing reinforcing curved CNTs and 
NCLPs, at two strain rates. 
 

9.5 Summary 

In this chapter, numerous 3D simulations, under strain control, subjected to both 

compression and tension load, for different kinds of nano inclusions are performed. In 

total, 184 simulations are conducted. For each type of inclusion, the magnitude of 

mechanical enhancement (Young’s modulus, maximum strength, amd toughness), and 

damage distribution inside the composites are computed through FE simulations. Also, 

damage in RVEs are presented, because their behavior key parameter is damage, and 

each inclusion type changes the damage distribution pattern. 

It is shown that the NCLPs can better improve the behavior of the composites in 

comparison to the spherical particles. However, NCLPs initiate and drive more damage 

in the models. Similarly, the NCRPs show almost the same damage distribution pattern; 

but, according to their shape, they cannot resist against damage evolusion path, and 

damage can bypath their round surfaces. Thus, NCLPs are able to perform as damage 

shielding or crack tip pinning to halt damage distribution, which toughens the composite. 
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CNTs with two ARs are investigated and shown to be able to improve the 

mechanical response, and the one with higher AR showed better enhacement. The main 

problem of CNTs is the small area of their tips, which stimulate the polymer matrix to be 

damaged. CNTs with higher AR generate more damage. In compression, damage 

initiates at CNT tips, because of their small cross section area, and CNTs penetrate into 

the matrix. Similarly in tension, damage initiates at the tips of CNTs, not for CNTs 

penetration but for the significant load transferred from matrix to the CNTs main bodies 

via their tips. Furthermore, damage initiation and propagation in all CNT forms have the 

same pattern. 

In the studied hybrid composites (CNT-NCLPs, and CNT-NCRPs), damage 

growth patterns are the same as models containing just CNTs. It is observed that the 

presence of particles do not stimulate damage inside the RVEs. In case of NCLPs, by 

increasing the particle contents, the damaged regions and their average magnitudes 

decrease; but, NCRPs do not have such effect. Hence, NCLPs are able to shield the 

composites against matrix degradation while mixed with CNTs. For both hybrid cases, it 

is found that the main enhancement is due to the presence of CNTs, and adding particles 

improves the mechanical responses a little more. Also, it is realized that the best 

improvement regarding the particles happens when they are mixed with the composites 

containing more fibers. Thus, when the CNTs volume fractions is higher, the effect of 

the particles are more pronounced. Also, the trends of toughness modulus are linear for 

both hybrids. 

 



370 
 

CHAPTER X 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

Polymer based structural components are widely used for numerous applications. 

Experiments reveal polymers are dissipative in nature and show rate and time dependent 

behavior under different loads, whether in the small or large strain regime. Also, several 

research studies show that mixing polymers with minute particles enhances composites 

thermo-mechanical properties. The idea is that dissipation phenomenon can be 

controlled by tiny particles; hence, composites behavior can be tailored by adding 

different particles into homogeneous polymer matrix. Thus, the goal is to provide recipes 

for virtually assessing the optimum combination of particles to customize composites for 

specific applications. For this purpose, the effects of randomly distributed particles in 

RVEs are virtually investigated on Young’s modulus and heat generation (in small 

strain), as well as damage distribution and stress-strain response (SSR) of composites in 

the large strain range. Therefore, significant number of simulations are conducted to 

examine the above mentioned behavior. 

10.1 Conclusions 

Several achievements of the present dissertation are listed as follows: 

1) An integrated framework for generalizing viscoelastic and viscoplastic constitutive 

laws from small to an arbitrarily large strain range has been formulated. The 

generalization is purely kinematic based; thus, it is applicable to different material 

types in the additive/multiplicative split-up framework of elastic and plastic strains. 
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2) A Schapery-type non-linear viscoelastic model based on II-PK stress and GL strain 

is derived utilizing Gibbs energy, to measure viscoelastic response in the large strain 

range. It is shown that the derived model using higher order ISV terms in Gibbs 

energy, and delivers similar mathematical form when lower terms are used. The 

effects of higher order terms are mapped to the model by the scalar function to 

capture the transient compliance. 

3) The generalized viscoelastic and a Perzyna-type viscoplastic to large strain, and a 

viscodamage model are implemented in ABAQUS user material subroutine. The 

models were calibrated for PMMA by stress control tests, and they are validated by 

strain control experimental data sets. 

4) A research software tool RVE_Maker, is designed and developed for creating micro/ 

nano RVEs. The RVE_Maker is able to create 2D and 3D composites. In 3D 

geometries, it is also able to generate hybrid particle-fiber composites. 

5) Numerous FE analyses using only viscoelastic model in small strain were performed 

on 2D and 3D RVEs. The following observation were made: 

 The circular and spherical particles sizes do not affect the RVE responses for all 

creep, recovery, and cyclic loads. The effects of elliptical particles are more 

noticeable as compared to round shape particles. 

 Higher Young’s modulus of the nano-composites in cyclic loads and diminishing 

in creep strains is a direct result of particles volume fractions. In the same volume 

fraction, particle shape governs the behavior. 

 The complex modulus in 2D simulations is higher than their counterpart in 3D 

models, and elliptical particles better enhance the behavior than the round ones. 
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 Energy dissipation and heat generation are found to be accelerated by adding 

particles to the system, or by increasing the applied load. The average temperature 

increase in the RVEs is about o1.1 C  in 2D and o0.9 C in 3D models. Elliptical 

particles showed more generated heat comparing to circular ones. 

 The 2D models artificially show localized viscoelastic strain regions; but in 3D 

models, such strain localization occurs when the particle volume fraction is high. 

6) The overall elastic modulus of several small scale CNT-reinforced composites are 

evaluated and the FEM results were validated with MD and ROM, just for one single 

CNT. This agreement play a significant role, because it means FEA can be used for 

characterizing the overall response of large 3D composites with acceptable accuracy. 

Moreover the following results are achieved: 

 Longer CNTs exhibit considerably better load transfer compared to shorter ones, 

and CNTs Poisson’s ratio does not affect the overall responses of the composites. 

 It is shown when a CNT is attached to the applied load face of an RVE, because 

the load directly acts on the CNT, the RVE elastic modulus is just governed by the 

embedded CNT. But, in reality load is applied to the matrix; and a very thin 

matrix layer in front of CNT tips significantly drops the modulus (10 times). Also, 

slight curvature in CNTs may drop the modulus about 2.2 times. In actual cases, 

because the load is applied on the matrix, and fibers are slightly or highly bent, 

and the bondings to matrix are imprefect; thus, obtaining extraordinary modulus 

enhancement is impossible. 
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 The composites behavior strongly depend on CNTs alignment, and the maximum 

mechanical responses are attained when assessed in the longitudinal direction of 

fibers. RVEs performances lower at any other fiber direction or a slight bending. 

 Several large scale RVEs with two ARs are probed. The results indicate nanotubes 

with higher ARs aligned to the loading direction deliver the best load transferring 

between fibers and matrix. Adding CNTs with any morphologies (up to 3 vol%) 

linearly improve the non-periodic and periodic RVE modulus, and periodic ones 

show better enhancement. The effects of CNTs with smaller ARs are almost the 

same as higher ARs, but with lower improvement. Because CNTs with higher AR 

are finer and better dispersed in an RVE domain to locally carry smaller portion of 

internal forces. Straight aligned CNTs with smaller ARs show extra modulus 

reduction (≈40%) but in perpendicular direction minimum reduction is seen (≈3%). 

7) Numerous large scale micromechanical models are generated and their responses 

regarding particles morphologies on overall responses are studied. 

 Micromechanical simulations show NCLPs can better enhance the composites 

SSR comparing to NCRPs. NCLPs shows damage shielding or crack tip pinning 

behavior to halt damage growth, which toughens the composite. 

 In compression, damage initiates at the NCLPs major tips and propagates in the 

direction of their major axis. But in tension, damages occur in between the major 

plates, then evolve either around particles or propagate to the undamaged regions. 

 NCRPs almost show the same damage distribution pattern; but, according to their 

shape, they cannot resist against damage growth path, and damage paths (cracks) 

bypass their round surfaces. 
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 CNTs with two ARs displayed enhancement in composites SSR, and higher AR 

showed better enhacement. But, CNTs with higher AR stimulate more damage, 

because their cross-sections are smaller and they penetrate into the matix. In 

tension, damage initiates at CNT tips, because of the significant load transferred 

via the tips. For both ARs, straight CNTs showed maximum improvement; but, 

they generate more damage in the RVEs, which expedites the SSR degradation. 

 In all CNT configurations, adding more CNTs that are not placed in the direction 

of load does not enhance the composite SSR, especially for the curved CNT state. 

But in all CNT forms, damage pattern are the same; it initiates at fibers tips, and 

evolves along major axis direction, and then propagates perpendicular to the axis. 

 Damage growth patterns in both hybrid cases are the same as RVEs containing 

just CNTs. The presence of particles almost do not stimulate damage inside the 

RVEs. In CNT-NCLP, by increasing the NCLP contents, the damaged regions and 

their average magnitudes decrease; but, NCRPs do not show such property. Thus, 

NCLPs can better shield the composites against damage growth while mixed with 

CNTs. For both hybrid cases, the main enhancement is due to the presence of 

CNTs and adding particles a little improves the performance. When the CNT 

volume fraction is higher, the effect of the particles is more pronounced, as well. 

10.2 Computational Expenses 

Creating, simulating, and extracting data from the mentioned micromechanical 

RVEs are cumbersome and very time consuming. One should notice that because hetero-

geneous composites having actual microstructural details are generated (discretization 
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contains millions of elements) are studied in large deformation range, also in each 

computational increment all model coordinates are updated, and many tensorial products 

must be computed; thus, very powerful computer resources are required to handle such 

FE problems, especially when numerous RVEs must be simulated and investigated. To 

overcome this problem, the numerical models should be professionally implemented in 

the ABAQUS-UMAT subroutine to minimize the arithmetic computations, checking 

conditions, and calling and passing of variables. In addition, internal subroutines in the 

UMAT subroutine must be implemented in a way to be compatible to be used by 

multiple CPUs (i.e., the subroutines should work simultaneously with several CPUs). 

Also, the amount of designated memory and the band for transferring data (catches) 

must be appropriate to the amount of data buffered and transferred in each increment by 

one CPU. If such items are considered and applied to the codes, and the computer 

resources are all set; then, huge RVEs can be simulated very fast. For example, 

simulating one 3D RVE containing 3 million elements, with the explained models 

without optimizing the FORTRAN code in UMAT and without applying parallelization 

capabilities to it (using one CPU) takes almost six weeks to be finished. But, applying 

the abovementioned code optimizations and other considerations allowed the simulation 

to be accomplished in just 1.8 days with 8 CPUs. One should note that utilizing 8 CPUs 

can approximately hasten such simulation just four times than using 1 CPU; thus, 

optimizing the code is more important. 
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10.3 Recommendations for Future Researches 

The current research and study can be extended to cover more physical aspects of 

the actual behavior of micro/nano polymer composites, as follows: 

1) The amount of dissipated energy and generated heat due to viscoplasticity and 

damage are more significant than the viscoelastic portion in particulated composites. 

Although, required equations are derived and mentioned in Appendix E, their values 

are not computed and presented in this work. Energy dissipation and temperature are 

highly recommended to be computed due to the three combined constitutive models, 

and the effects of the generated heat should be incorporated into the numerical 

models. This allows the degradation of material response due to the internal 

generated heat is measured while mechanical loads are applied, especially for high 

stress levels or strain rates. 

2) The interfaces between the studied inclusions and polymer matrix can be considered 

and modeled through Cohesive Contact Elements (CCE) or Cohesive Zone Models 

(CZM). This allows virtual simulation of the traction separation damage; or, the 

debonding of inclusions from the surrounding matrix can be analyzed. One important 

future idea is to calculate and apply the generated heat corresponding to the 

separation of particles from matrix. This is of interest because of the local generated 

heat at the interfaces degrades the stiffness of the surrounding matrix, and then 

gradually distributes through the whole RVE. 

3) In this work, particles and fibers are considered as just elastic materials. But, their 

actual behaviors are elastic-damage, or elastoplastic. For example, the mechanical 
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properties of NCLPs or CNTs are different in each direction. Because, inclusions 

carry high portions of internal forces, their actual response can locally affect the 

microstructure and then affect the overall response of the RVEs. 

4) These time- and rate-dependent constitutive models can be modified to incorporate 

the effects of moisture diffusion (environmental condition), and aging (long term 

service) on polymer composites. 

5) Thermal conductivity of carbon nanofibers/nanotubes are remarkably high. So, heat 

conduction can be studied while a composite is subjected to a heat flux load, or when 

heat is generated due to a mechanical load. The thermal coefficients can also be time 

dependent since the polymer matrix is time dependent. 

 
After incorporating the mentioned recommendations, the responses of the whole models 

are qualified to be compared with experimental data. However, each of these items takes 

significant time and effort to be fully studied and practically implemented. 
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APPENDIX A 
 

1.  Direct Solution For Stretch Rate Equations 

Some problems in solid mechanics that deal with large deformation concept need 

a solution for a tensorial equation as 

 AX XA B   (A.1) 

where A  and B  are known, and X  is unknown and all are second order tensors. A 

broad review of applications of the recent equation in continuum mechanics and other 

branches of engineering can be found in Scheidler (1994). For example, denoting by U  

and V  (the right and left stretch tensors (Gurtin, 1981)), their material time derivatives 

U  and V  can be achieved in turn by solving the following tensor equations 

 known or knownUU UU C VV VV B           (A.2) 

The direct solution for Eq. (A.1) through a systematic approach has been explained by 

Rosati (2000), through converting Eq. (A.1) to 

 , where:AX XA B X B A I I A+ =  = = Ä + Ä �  (A.3) 

Then based on the inverse of the forth rank tensor  ,  tensor X  can be computed as 

 

or 
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Here AI , AII , and AIII  are the coefficients of the characteristic equation of the second 

order tensor A , which can be calculated as 

 2 21
tr( ) , (tr( )) tr( ) , det( )

2A A AI A II A A III A       (A.5) 

In addition the term A A AI II III  can be written as 

 1 2 2 3 3 1( )( )( )A A AI II III            (A.6) 

where ( 1,2,3)i i   are the eigenvalues of tensor A . Therefore, one of the simplest 

check point criteria for non-singularity of Eq. (A.1) is 

 0 and 0A A A AIII I II III    (A.7) 

For more detail, the reader is referred to Rosati (2000). Simpler results were 

obtained by Sidoroff (1978) who was the pioneer to find a direct solution that was just 

expressed based on terms of A  and B . Further expressions of the solution of Eq. (A.1)  

were later found by Dienes (1979) and Guo (1984) for a skew tensor B , and by Hoger 

and Carlson (1984) for a generic B , and by Mehrabadi and Nemat-Nasser (1987) who 

addressed the case of a skew-symmetric right-hand side of Eq. (A.1) having a slightly 

different form. 
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APPENDIX B 
 

1.  Consistent Tangent Modulus 

It can be proved in different ways that the Lagrangian equation of motion is 

similar to the one in current configuration (Eulerian concept), and can be written as 

 , 0 0iJ J i iP b a    (B.1) 

In which ia  is acceleration vector, ib  is body force, 0  is the density of the domain in 

undeformed configuration, and iJP  is the first Piola-Kirchhoff stress. Now with the 

purpose of writing the virtual work; so, through multiplying both sides of Eq. (B.1) by 

virtual displacement vector, iu , and integrating over the reference volume, oV , along 

with utilizing divergence theorem, and assuming that the acceleration vanishes, virtual 

work can be found (Lubliner, 1990) as 

 , d d d
o o ot

iJ i J o o i i o i i oV V V
P u v b u v T u s


        (B.2) 

Here,   and T  are the gradient operator and the traction per unit area in the material 

(reference) configuration. Also, by revisiting the definition of the Green-Lagrange (GL) 

strain, one can say 

    1 1
,

2 2
T T TE F F I F I u E F u u F          (B.3) 

where E  is the virtual Lagrangian strain field. It can be simply shown that 

 ,iJ i J IJ IJP u S E    (B.4) 



405 
 

Substituting Eq. (B.4) into Eq. (B.2), makes facilitation to express the principle of virtual 

work based on second Piola-Kirchhoff (II-PK) stress and GL strain in the next form 

 d d d
o o ot

IJ IJ o o i i o i i oV V V
S E v b u v T u s


        (B.5) 

Here, S  is the II-PK stress field at the current analysis time ( t t ), T  is the boundary 

tractions, and u  is an acceptable virtual displacement, also   denotes the material 

gradient. Now, if a desired constitutive model for determining the stress field has the 

following general form 

  ˆ
t t t tS S F   (B.6) 

where t tF  is the current deformation gradient tensor. Considering t tT   and t tf   as the 

traction and the body force vectors at the current time, respectively; Eq. (B.5) can be 

rewritten as 

  ˆ : d d d 0
o o ot

t t o t t o t t oV V V
S F E v f u v T u s  

        (B.7) 

Eq. (B.7) introduces a set of non-linear equations that can be solved for updating the 

deformation mapping. Now, for solving this equation by utilizing Newton-Raphson 

iterative technique, the linearized form for each incremental displacement has the 

succeeding form 

 : : d Applied Forces
o

t t oV
K u E v     (B.8) 

Here t tK   is the consistent tangent modulus and can be linearized to upgrade stress by 

 t t
t t

SK
E







 (B.9) 



406 
 

Here, it worth to be noted that, if Eqs. (B.2) to (B.8) are written in spatial configuration 

the consistent tangent in Eq. (B.9) should be mapped to the current configuration. 

 T or (for I-PK configuration)ijk l jJ lL iJkLk FK F k F F K 
    

 (B.10) 

T T1 1
or (for II-PK configuration)ijkl iI jJ kK lL IJKLk FKF FF k F F F F K

J J
 
      

 (B.11) 
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APPENDIX C 
 

1.  Derivation of Tangent Compliance of Modified Viscoelastic Model 

Here, a consistent tangent modulus for compliance is defined by taking the 

partial derivative of incremental residual strain with respect to the increment of stress at 

the end of each time analysis. As mentioned in Appendix B, the consistent tangent 

compliance matrix can be written as following, at the converged state
 

 

t
ijt

ijkl t
kl

R
C

S



  (C.1) 

There are two ways to find the increment of Lagrangian strain. Based on each method, 

different residual strain, and consequently different consistent tangent tensor formula 

will be achieved. The first approach for computing the residual strain tensor may be built 

on additively decomposition of volumetric and deviatoric portions of strain increments. 

It can be employed just when the time increment is very small, or when the volumetric 

portion of the strain measure is small enough in comparison to the distortional part or the 

deformation gradient tensor changes very slightly; then it has the following form 

 
,dev ,volt t t t

ij ij ij ijR E E E     
 (C.2) 

In this point of view, similar to Eq. (3.79), both total and incremental volumetric and 

deviatoric strains are 

 
,dev ,dev ,vol ,vol,t t t t t t t t

ij ij ij ij ij ijE J S d E B S V   
 (C.3) 

 

   
   

T 1,dev ,dev ,dev

T 1,vol ,vol ,vol

t t t t t t t t t t t t t t
ij ir rs rs rs rs sj

t t t t t t t t t t t t t t
ij ir rs rs rs rs sj

E F J S J S d d F

E F B S B S V V F

     

     

      

      
 (C.4) 
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By replacing the required relations for tJ , tB , t
ijd , and t

ijV
 
into dev

ijE  and vol
ijE , Eq. 

(C.2) can be expanded, similar to Eq. (4.68), as
 

    T 1t t t t t t t
ij ij ir rs sjR E F F

         (C.5) 

where: 

 
NP

,dev ,dev ,dev
1 1 ,

1

NP
,dev

2 1 1
1

,vol ,vol
1

1
exp( )

2

1 exp( ) 1 exp( )1

2

1
e

3

t t t t t t t t t t t t t
rs rs rs n n rs n

n

t t t
t t t t t t tn n

n rst t t
n n n

t t t t t t t
rs rs n

J S J S J g g q

g J g g S

B S B S B g

 

   
   

   




  




 

      

      
    

  





 
NP

,vol
1 ,

1

NP
,vol

2 1 1
1

xp( )

1 exp( ) 1 exp( )1

3

t t t t t
n rs n

n

t t t
t t t t t t tn n

n rst t t
n n n

g q

g B g g S

 

   
   

 




  




  

      
    





 

By substituting ,dev ,volt t t
rs rs rsS S S   into the above equation, the terms containing tJ  and 

tB  can be modified into a desired form as shown in this expression 

     
,dev ,dev

,vol ,vol ,vol ,vol

t t t t t t
rs rs

t t t t t t t t t t t t t t t t t t t t t
rs rs rs rs rs rs

J S J S

B S B S J S J S B J S B J S

 

      

 

        (C.6) 

Exchanging the achievement of Eq. (C.6) with the related terms in Eq. (C.5), and 

differentiating the proper terms, and recalling that the derivation of the terms in the 

previous time increment with respect to the current stress state should be vanished; then, 

the consistent tangent tensor will be expressed 

    T 1
t
ij t t t trs

ir sjt t
kl kl

R
F F

S S
    

      (C.7) 

where
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The derivation of the first term of Eq. (C.7) can be written as 

  
,vol

,volTerm(1)
t tt t t

t t t t trs rs
rs rst t t t t

kl kl kl kl kl

S SJ B JS J S B J
S S S S S

    
             (C.8) 

The volumetric portion of the second Piola-Kirchhoff (II-PK) stress [see Eq. (3.145)] is 

 
vol 11

( )
3rs mn mn rsS S C C

 (C.9) 

Thus, its derivation with respect to the total II-PK stress is a fourth-order tensor as
 

 

vol
1 1 11 1 1

3 3 3
rs mn

mn rs mk nl mn rs kl rst
kl kl

S S C C C C C C
S S

    
  

   (C.10) 

Hence, by substituting 
t
rs

ir jst
kl

S
S

 



 and also Eq. (C.10) into the first term of Eq. (C.7), 

this term will be modified as
 

   1 ,vol1
Term(1)

3

t t t
t t t t t

rk sl kl rs rs rst t t
kl kl kl

B J JJ B J C C S S
S S S

      
           (C.11) 

Now, recalling ,dev ,volt t t
rs rs rsS S S  , one can find Term (1) as 

 
NP

,vol ,dev
1 ,

1

Term(1) Term(2)

NP
,dev

2 1
1

1
( ) exp( )

2

1 exp( )1

2

t t t t t t t t trs
rs rs n n rs nt t t

nkl kl kl

t
t t t t tn

n rst t
nkl n

J S B J S J g q
S S S

g g J S
S

 

 
 





 



               

    
      





 

Term(3)

NP
,vol

1 ,
1

Term(4)

NP
,vol

2 1
1

Term(5)

1
exp( )

3

1 exp( )1

3

t t t t
n n rs nt

nkl

t
t t t t tn

n rst t
nkl n

B g q
S

g g B S
S

 

 
 





 





        

    
       









 
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   1 ,vol ,dev1
Term(1)

3

t t
t t t t t

rk sl kl rs rs rst t
kl kl

B JJ B J C C S S
S S

    
    

   (C.12) 

From now on, the derivation of the reduced time with respect to the incremental stress is 

required; therefore, one can find it as 

 
 2

t t
nt t S Sn n

S S rs rs S rsS

a att t
a a S S a Sa

     
     

      
    (C.13) 

In addition, the next derivation is also required and useful for expanding Eq. (C.7). 

 

 1 exp( ) 1
1 (1 )exp( )

1 exp( )1
or exp( )

t
t tn S

n nt
kl n n kl

t
tS n

nt
S kl n

a
S t S

a
a S

     
  

   
 

    
          

    
      

 (C.14) 

From now on, for the rest of expressing the mathematical forms, the next relations will 

be used to simplify the final derivation 

1 2 31 1 1 1 1
, , ,

t t tt t t t t
t S S S

kl n n kl klt t t t t t t t
kl S kl kl S kl S kl

a a ag g g g g
S a S S a S a S

     
     
    

  
 (C.15) 

By considering Eqs. (C.13) to (C.15), one can derive and simplify the second and third 

terms of Eq. (C.7), as 

NP
,dev ,dev1

, 1 ,
1

( )1
Term(2) exp( ) exp( )

2

t t
t t t t t t tn

n n rs n n n rs nt t
n kl kl

gJ q J g q
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     



    
        



 

              

NP
1 ,dev

, ,
1

1
exp( )

2
t t t

n kl n n rs n
n

J q  



      
 (C.16) 
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
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2 3 ,dev

2
1
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2
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n kl kl n rst
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g J S   
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

     
           

     (C.17) 

Again, considering Eqs. (C.13) to (C.15), one can also derive and simplify the fourth and 

fifth terms of Eq. (C.7), as 

NP
1 ,vol

, ,
1

1
Term(4) exp( )

3
t t t

n kl n n rs n
n

B q  


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 (C.18) 
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3
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

     
           

  
 (C.19) 

Because of similarity in mathematical formulation, summation of the second and fourth 

terms, and also the third and fifth terms of Eq. (C.7) can be combined and written as 
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1 ,dev ,vol

, , ,
1

1 1
Terms(2) (4) exp( )

2 3
t t t t t
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 (C.20) 
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
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         



 
 (C.21) 

Finally, the viscoelastic consistent tangent compliance tensor of the single convolutional 

integral, that is modified based on GL strain and II-PK stress, will be expressed 
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 (C.22) 

As mentioned in Chapter 4, since in incremental solution the derivation of non-linear 

material parameters regarding to the effective stress are achievable; therefore, the 

derivation of the effective stress, S , with respect to the total stress is introduced. This 

derivation is presented here, in which the S  is introduced as the effective stress.
 

  
dev1

dev dev dev dev 2
3 3

2 2
mn

mn mn mn mn mn
ij ij

SSS S S S S S
S S

  
          (C.23) 

Substituting the deviatoric portion of the II-PK [see Eq. (3.145)] into Eq. (C.23) gives 

 
13 1 1

( )
2 33

2

mn pq pq mn mn
ij ij

mn mn

S S S C C S
S S

S S


              (C.24) 

The derivation of deviatoric stress with respect to the total II-PK stress may be expressed 

and simplified as 

1 1 11 1 1
( ) ( )

3 3 3mn pq pq mn mn mi nj pi qj pq mn mn ij ij mn mn
ij

S S C C S C C S S C C S
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                      (C.25) 

Therefore, replacing Eq. (C.25) into Eq. (C.24), the final mathematical formulation of 

ij

S
S




 is written as following 



413 
 

 
13 1 1
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2 3ij ij mn mn
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S S C C S
S S

         (C.26) 

Now, since factorizing 
ij

S
S




 from Eq. (C.22) is needed; therefore, such factorization 

also should be applied to Eq. (C.15) which are embedded inside Eq. (C.22). Thus, 

similar to Eq. (C.15), the following terms can be defined and used. 

1 2 31 1 1 1 1, ,
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  
 (C.27) 

At this point, through factorizing 
ij

S
S




 from Eq. (C.22), and employing the result of its 

derivation in Eq. (C.26), then Eq. (C.22) can be rewritten and shown as the next formula.
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 

 (C.28) 

The second approach relates to the cases when the time increments become larger, or the 

quantity of the volumetric strain is not small comparing to the distortional counterpart. 

Therefore, the additive decomposition of the volumetric and deviatoric strains is not 

acceptable any more. Thus, the mathematical form for the residual strain should be 

revised. As introduced in Eq. (4.74), one can express the residual strain tensor as 
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  T FEM 11
, where:

2
t t
ij ij ik kjR E F F I F F F       

 (C.29) 

where FEMF  is the deformation gradient that is provided by FEM software, and F  is the 

one computed through constitutive models. 

 

T

T1

2

t
ij mjim

mj imt t t
kl kl kl

R FF F F
S S S

                  
 (C.30) 

Henceforth, one should find the mathematical relation of im
t
kl

F
S




, which is presented in 

the following. Substituting FEM 1F F F    and F RU , one can derive 

 

1 1
FEM FEM T T 1, Note:ij pj pq

ip ip qjt t t
kl kl kl

F F U
F F R R R

S S S

 
  

  
    (C.31) 

Now, in order to expand the recent equation, the decomposition of total stretch tensor to 

volumetric and deviatoric as dev volU U U  should be taken into account. 

 

1 11 vol dev
1 1dev volpq pr rq

rq prt t t
kl kl kl

U U U
U U

S S S

 
   

 
    (C.32) 

Now, the derivation of volU  and devU  with respect to incremental stress is required. At 

first, volU S   is derived. For this purpose, the following relations between total 

volumetric stretch and strain should be recalled. 

    
1

vol vol vol vol vol vol vol22 , t t t t t t tU I E E E U E U     
 (C.33) 

By utilizing the recent relations, the derivation of volumetric stretch with respect to 

incremental II-PK stress can be written as 
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    
1,vol ,vol

31
,vol ,vol2 22 2

t t
pr pst t

t t tpr sr
kl kl kl

U E
I E I E

S S S


 

    
    (C.34) 

Also, according to Eq. (C.33) 

 

,vol ,vol
- ,vol - ,vol

t t
ps t t t tmn

pm nst t
kl kl

E EU U
S S

  


   (C.35) 

where:

       
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1 1- ,vol ,vol ,vol - ,vol
t

t t t t t t t t t t t t tmn
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E U B S B S V V U
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        
       

 

Substituting this equation into Eq. (C.34), and since the derivations of the quantities in 

the previous time increment with respect to the current time increment is zero, it delivers 

  
,vol ,vol

,vol ,vol
t t tt
ps ps pst t t t t

ps ps pst t t t t
kl kl kl kl kl

E S VBB S V S B
S S S S S
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    

      (C.36) 

Then, one can expand Eq. (C.35) as 
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     
           







 
 (C.37) 

Finally, the derivation of the inverse of volumetric stretch with respect to the current 

incremental II-PK stress can be written as 
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

 (C.38) 
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Similarly, one could find the derivation of the inverse of deviatoric stretch with respect 

to the current incremental II-PK stress as 

1,dev NP
,dev 1 ,dev 1

, ,
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2 3 ,dev
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,dev 22 t
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I E
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


 (C.39) 

Now, to find the final form of Eq. (C.31), one has to recall that ,devt
rqU  is symmetric, and 

the indices r  and q  can be interchanged. Hence, the next two equations can be 

achieved 
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 (C.40) 

So, Eq. (C.32) can be written as 
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where: 
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According to Eqs. (C.23) to (C.27) the forth order tensors in Eq. (C.41) are rewritten as 

 

 
NP

1 ,vol ,vol 1
, ,

1

NP
2 3 ,vol

2
1

1 1
exp( )

3 3

1 exp( )1
exp( )

3

1

3

t
t t t t t

pskl kl ps ps n n ps n kl nt
nkl

t
t t t t tn

n kl kl n pst
n n

t
pskl pk sl k

S BK C C B S B q
S S

g B S

G J C

 

   
 

 

 



 



          
     

              

 







 

NP
1 ,dev ,dev 1

, ,
1

NP
2 3 ,dev

2
1

1
exp( )

2

1 exp( )1
exp( )

2

t
t t t t

l ps ps n n ps n kl nt
nkl

t
t t t t tn

n kl kl n pst
n n

S JC S J q
S S

g J S

 

   
 

 



 



              
                    







 

 (C.42) 

Hence, according to   1 11 T ve
xq qj xq qj xjU R U R F

    , one may expand Eq. (C.31) as 

    1 1 1FEM ,vol ,dev ve2 2ij t t
ip pskl pskl xjt sx sx
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F
F K I E G I E F

S
            (C.43) 

Also 

  T TT FEM 1 T FEM
im my yi iy ymF F F F F   

 (C.44) 

Therefore, the forth order compliance tensor, Eq. (C.30) will be written finally as 

      1 1 1T FEM ,vol ,dev vesymm 2 2
t
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  (C.45) 
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APPENDIX D 
 

1.  Derivation of Consistent Tangent Compliance of Modified Viscoelastic and 
Viscoplastic Models 
 

Similar to Appendix C, here a consistent tangent modulus for compliance is 

defined by taking the partial derivative of incremental residual strain with respect to the 

increment of stress at the end of each time analysis. As explained in Appendix C, the 

consistent tangent compliance matrix can be written as following, at the converged state
 

 

t
ijt

ijkl t
kl

R
C

S



  (D.1) 

Here, the same approach as mentioned in Appendix C is used for the cases when the 

time increments become larger or the quantity of the volumetric strain is not small 

comparing to the distortional counterpart. Thus, the same mathematical form for the 

residual strain introduced in Eq. (4.74) or (C.29), is recalled and used for this purpose 

  T FEM 11
, where:

2
t t
ij ij ik kjR E F F I F F F       

 (D.2) 

where FEMF  is the deformation gradient that is provided by FEM software, and F  is the 

one computed through constitutive models. 
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t
ij mjim

mj imt t t
kl kl kl

R FF F F
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                  
 (D.3) 

Henceforth, one should find the mathematical relation of im
t
kl

F
S




, which is presented in 

the following. Substituting FEM 1F F F    and ve vp ve vpF F F RU U  , one can derive 
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1 1vp ve
1 1FEM ve vp Tij pr rq

ip rq pr qjt t t
kl kl kl

F U U
F U U R

S S S

 
 
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  

    
 (D.4) 

In this equation, the derivation of the inverse of viscoelastic stretch with respect to the 

incremental II-PK stress is expressed in Eq. (C.41). However, in order to derive the 

inverse of viscoplastic stretch with respect to the incremental II-PK stress, the definition 

of viscoplastic stretch should be revisited [see Eq. (3.89) and (3.94)]. 

    Tvp vp vpexp( ) ,t t t t t t t tU t U R D R   
 (D.5) 

Therefore, the inverse of viscoplastic stretch in Eq. (D.5) is 

    1 1vp vp exp( )t t t tU U t
 

  
 (D.6) 

One can find the derivation of this equation with respect to the incremental II-PK stress 
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 
 (D.7) 

According to the commutability of stretch and incremental stretch tensors, one can write 
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 (D.8) 

which delivers 
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According to the definition of the viscoplastic stretch, t ,vpD  (see Chapters 3 and 5), the 

derivation of the rotated viscoplastic stretch regarding to the incremental II-Pk stress, 

t

tS




, can be written as 

  T Tt ,vp vp
t
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
 (D.10) 

Here, one should recall that tR  is constant through each time increment, or if tR  is 

lumped to the viscoelastic part, then it must be removed from the above and 

consequently from the following derivations. However, by substituting the relation for 

vp  and the viscoplastic potential function, g ; one can get 
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 (D.11) 

Expanding the recent equation, delivers 
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
 (D.12) 

The definition of the functions f  and g  are presented in Chapter 5. Now, regarding the 

definition of the stress invariants, one can simply obtain 

 
dev dev dev32
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27
3 , 3

2ij ik kj ij
ij ij

JJ S S S J
S S


  

   (D.13) 

Moreover, the derivation of the yield function, f  in Eq. (5.17), regarding to stress is 

presented here 
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 (D.14) 

Also, the first and second derivations of the viscoplastic potential function, g  in Eq. 

(5.20), with respect to the stress state are expressed as 
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Up to now, all the required tensors are determined. Henceforth, the second term of Eq. 

(C.30) can be found by substituting F  into it as 

  
1 1vp ve

T 1 1T FEM 1 FEM ve vp Tmj pr rq
im mx xi mp rq pr qjt t t

kl kl kl

F U U
F F F F U U R

S S S

 
 

   
   

    
 (D.17) 

Now, one should recall 
1 1ve ve TF U R 
 , and 

TFEM FEM FEMC F F . Then, through 

utilizing Eqs. (C.43) to (C.45), Eq. (D.17) can be expanded as 
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 (D.18) 
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After factorizing the inverse of the viscoplastic stretch from left side and viscoelastic one 

from right side, one can obtain the final form of the compliance tensor as 
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 (D.19) 

The forth order tensors psklK  and psklG  are expressed in Appendix C [see Eq. (C.42)]. 
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APPENDIX E 
 

1. Thermodynamic Based Formulation for Modeling Coupled Viscoelastic, 
Viscoplastic, Viscodamage Constitutive Material Laws 
 

This appendix briefly presents a general thermodynamic framework for coupling 

viscoelastic, viscoplastic, and viscodamage models in the isothermal conditions. This 

framework will then be applied to derive Schapery’s (1969a) non-linear viscoelastic 

model, Perzyna’s (1971) viscoplastic model, and the viscodamage model of Darabi et al. 

(2011). Readers are referred to Abu Al-Rub and Darabi (2012) for detailed information 

on the general thermodynamic framework for derivation of coupled viscoelastic, 

viscoplastic, and viscodamage models for time- and rate-dependent materials. For 

simplicity, the following thermodynamic formulations are presented assuming large 

deformation concept. 

One can start with the principle of virtual power which states that the external 

outflow of the power, intP , due to a virtual motion should be balanced by the internal 

expenditure of the power, extP , associated with the same virtual motion, such that 

 int extP P  (E.1) 

where intP  is assumed to be characterized by the Cauchy stress tensor  , the drag-stress 

R  associated with the isotropic hardening, the damage force Y  conjugate to the damage 

density variable  , and ve
intN -thermodynamic forces n  conjugate to the 

phenomenological internal state variables associated with viscoelastic process, n  

( ve ve
int int1,..., ; 1n N N  ). On the other hand, extP  is defined in terms of the macroscopic 
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body force vector b , the macroscopic surface traction t , and inertial forces. Hence, intP  

and extP  can be written, respectively, as 

 
ve
int

ve vp
int

1

dv
o

ij ij n n e
n

N

P S E RE Y  




 
     

 
     (E.2) 

 ext dv dA dv
o o o

i i i i i iP b u t u u u
  

         (E.3) 

where vp
eE , u , o , and o  are the rate of the equivalent viscoplastic strain, the 

displacement vector, an arbitrary sub-body in the initial configuration, and the boundary 

of the selected sub-body, respectively. From now on, ijE is the GL strain and ijS  is the 

II-PK stress. It is noteworthy that the internal state variables associated with the 

viscoelastic process (i.e. n ) are considered as hidden state variables. These hidden state 

variables are associated with the microstructure of the materials or the chain mobility in 

polymers and cause the evolution of the viscoelastic strain veE  which is an observable 

variable that can be measured experimentally. Substituting Eqs. (E.2) and (E.3) into the 

principle of virtual power (i.e. Eq. (E.1)), and applying the divergence theorem yield 

 , in , on    IJ J I o o I IJ J oS b u T S n  (E.4) 

 0 in  ij ij oS N R  (E.5) 

 0 and 0 in  n oY  (E.6) 

where o  is the density in the material configuration, n  denotes the outward unit vector 

normal on the boundary o  and N  denotes a second-order tensor representing the unit 

direction of the viscoplastic rate of deformation tensor, vpD , that can be defined using 
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the non-associative normality flow rule, such that 

 ij
ij

gN
S





 (E.7) 

where g  is the viscoplastic potential function in Eq. (5.20). Eq. (E.4) is the local static 

or dynamic equilibrium and the boundary traction, respectively. Eq. (E.5) is the 

viscoplastic micro-force balance (according to notion of Gurtin (2003)) which can be 

used for deriving the dynamic viscoplasticity yield surface. Similarly in Eq. (E.6), Y  

and n  define the damage micro-force balance (Fremond and Nedjar, 1996) and the 

viscoelastic micro-force balance (Abu Al-Rub et al., 2010), respectively. 

In continuum damage mechanics, in order to transform equations from the 

nominal (damaged) configuration to the effective (undamaged) configuration, a 

transformation hypothesis is required. Recently, Darabi et al. (2011) revisited the 

commonly assumed strain equivalence and strain energy equivalence hypotheses (Abu 

Al-Rub and Voyiadjis, 2003) and proposed a more physically sound transformation 

hypothesis for time-dependent materials according to the power equivalence hypothesis. 

The power equivalence hypothesis states that any type of power (e.g. elastic, 

viscoelastic, plastic) in the nominal configuration is equal to its identity power in the 

effective configuration. Therefore, one can rewrite Eq. (E.2) as 

 

ve
int

ve vp
int

1

( )dv
o

ij ij n n e
n

N

P S E RE 




      (E.8) 

The superimposed dash indicates a quantity in the effective state. For developing the 

thermodynamic-based constitutive equations, it is assumed that the state of the materials 
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can be characterized by the suitable internal state variables which implicitly describe 

important micro-structural mechanisms that affect the macroscopic behavior of the 

material. The Helmholtz free energy (per unit mass),  , is considered as the 

thermodynamic state potential depending on the internal state variables. Here,   is 

assumed to depend on the following internal state variables in the undamaged 

configuration 

  , , ,ve vp
ij e nE E      (E.9) 

The Clausius-Duhem inequality for isothermal conditions (Gurtin, 2003) can be written 

as next 

 ext intdv
o

P P


     (E.10) 

Employing Eqs. (E.2) and (E.9) into Eq. (E.10) and also making use of the power 

equivalence hypothesis to relate variables in the effective and nominal configurations, 

Eq. (E.8), deliver the following inequality for the rate of energy dissipation ( ) 
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ve
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vp
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    
           

    
          

 

 
 (E.11) 

However, to obtain a non-zero dissipation resulting from the viscoelasticity, 

viscoplasticity, and viscodamage dissipative processes, the following energetic 

thermodynamic conjugate forces that depend on the Helmholtz free energy are defined 

from Eq. (E.11), such that 
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 ene ene ene ene

ve
, , ,ij o n o o ovp

ij n e

S R Y
E E

    
 

   
   

   
 (E.12) 

The superscript “ene” means the energetic portion of the thermodynamic conjugate 

force. Besides, since any thermodynamic force is made ofa dissipative and an energetic 

component; thus by substituting Eqs. (E.12) into Eq. (E.11), one can get 

 

ve
int

dis ve dis dis vp dis

1

0ij ij n e
n

N

S E R E Y  


          (E.13) 

The energetic and dissipative thermodynamic conjugate forces are related to the 

Helmholtz free energy function,  , and the rate of dissipation potential,  , 

respectively. Therefore, in order to formulate constitutive equations for the energetic and 

dissipative conjugate forces, one needs to know: (1) how the material stores energy, and 

(2) how the material dissipates energy; which helps in assuming mathematical forms for 

both   and  . The dissipative component of the thermodynamic conjugate forces can 

be determined using the maximum dissipation principle along with the calculus of 

several variables (Abu Al-Rub and Darabi, 2012), such that 
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 (E.14) 
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 (E.15) 

The energetic and dissipative components of the thermodynamic conjugate forces can 

now be determined using Eqs. (E.12), (E.14), and (E.15) provided that   and   are 

known. Therefore, one needs to assume mathematical forms for   and   to derive the 
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specific constitutive equations. The next mathematical assumed forms lead to derive 

Schapery’s non-linear viscoelastic model (stress state as a function of strain history) 

 
ve (1) ve ve (2) (3) ve

ve ve ve

1 1

2 2o ijkl ij kl mn m n ijn ij n

ijkl ij kl mn m n

L E E L L E

E E P
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  

   

     
 (E.16) 

The energetic and dissipative components of the viscoelastic conjugate forces can be 

determined using Eqs. (E.12), (E.14), and (E.16), such that 

  ene (2) (3) dis
1 ,ve ve

n mn m ijn ij n mn mL a E L E P        (E.17) 

Replacing Eqs. (E.17) into the viscoelastic internal micro force balance (i.e. 

ene dis 0n n n     ) yields the following partial differential equation that governs the 

viscoelastic process 

 (2) (3) ve 0mn m mn m ijn ijP L L E     (E.18) 

Solving Eq. (E.18) and using the Laplace transform delivers 

  
(3) ve

(2) 0

dE
( ) 1 exp[ ( )] d , (No sum on  )

d

tijm ij
m m

mm

L
t m

L
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
      (E.19) 

where (2) /m mm mmL P  . Similarly, the energetic and dissipative components of the stress 

can be determined using Eqs. (E.12), (E.14), and (E.16), as 

 ene (1) ve (3) dis ve,ij tukl kl tun ij ijkl klS L E L S E      (E.20) 

The II-PK stress as a function of the viscoelastic GL strain can now be obtained using 

Eqs. (E.19) and (E.20) 

        ve
0ve ve

0
1

d
1 exp[ ( )] d

d

Mt klm
ij ijkl kl pqkl kl pqkl m
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where    0 (1) (3) (3) (2)/ijkl ijkl ijm klm mmC L L L L   and   (3) (3) (2)/m
ijkl ijm klm mmC L L L . Eq. (E.21) represents a more 

comprehensive formulation relating the total stress to the viscoelastic strain comparing 

to classical Schapery’s viscoelasticity model. Viscoelastic strain as a function of stress 

(i.e. Eq. (5.8)) can simply be derived by applying the inverse Laplace transform to Eq. 

(E.21). Now, in order to derive the Perzyna-type viscoplasticity model used in this work 

(see Section 2.3), the following mathematical forms are assumed for the viscoplastic 

components of the Helmholtz free energy and the rate of energy dissipation, such that 

    
1

1vp
vp vp vp vp 0 vp1

0 1 2 vp
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
 (E.22) 

Substituting Eq. (E.22) into Eqs. (E.12) and (E.15) yields 

  
1

vp
vp 0 eff

0 1 2 eff vp
1 exp

N

yR     
           

 (E.23) 

Substituting Eqs. (E.7) and (E.23) into the micro-force balance in Eq. (E.5) leads to the 

viscoplastic model used in this work, such that: 

  
1

vp
vp 0

1 0 1 2 eff vp
1 exp 0

N

yI        
             


 (E.24) 

The above expression can be rearranged to obtain Perzyna-type viscoplastic model in 

Eqs. (5.14) to (5.19). Similarly, the following forms are assumed for the viscodamage 

components of the Helmholtz free energy and rate of the energy dissipation in order to 

derive the viscodamage model used in this work 
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1
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Substituting Eq. (E.25) into Eqs. (E.12) and (E.15) yields 
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Y q
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 (E.26) 

The viscodamage model used in this work is obtained by substituting the energetic and 

dissipative components of the damage conjugate force into the damage micro-force 

balance in Eq. (E.6) (i.e. ene dis 0Y Y Y   ), such that 

 
2

vd
0 eff

0

(1 )
exp( )

q
Y k E

Y
  

   
 

  (E.27) 

It is noteworthy to mention that the presented thermodynamic framework is general and 

can be used for derivation of different constitutive models for different types of materials 

depending on the assumed expression for   (Helmholtz free energy function), and 

(rate of dissipation potential). 


